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Abstract

This dissertation discusses model and forecast comparison, calibration, and com-

bination from a foundational perspective. For nearly five decades, the field of

forecast combination has grown exponentially. Its practicality and effectiveness

in important real world problems concerning forecasting, uncertainty, and deci-

sions propels this. Ample research– theoretical and empirical– into new methods

and justifications have been produced. However, its foundations– the philosophi-

cal/theoretical underpinnings up0n which methods and strategies are built– have

been unexplored in recent literature. Bayesian predictive synthesis (BPS) defines a

coherent theoretical basis for combining multiple forecast densities, whether from

models, individuals, or other sources, and generalizes existing forecast pooling and

Bayesian model mixing methods. By understanding the underlying foundation that

defines the combination of forecasts, multiple extensions are revealed, resulting in

significant advances in the understanding and efficacy of the methods for decision

making in multiple fields.

The extensions discussed in this dissertation are into the temporal domain.

Many important decision problems involve time series, including policy decisions

in macroeconomics and investment decisions in finance, where decisions are se-

quentially updated over time. Time series extensions of BPS are implicit dynamic

latent factor models, allowing adaptation to time-varying biases, miscalibration,

and dependencies among models or forecasters. Multiple studies using different
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data and different decision problems are presented, demonstrating the effective-

ness of dynamic BPS, in terms of forecast accuracy and improved decision making,

and highlighting the unique insight it provides.

Chapter 1 introduces the idea of Bayesian predictive synthesis and outlines this

dissertation. Chapter 2 formulates the theoretical foundations of BPS and extends

it to dynamic decisions, as well as Bayesian computation that enables BPS. Chap-

ter 3 provides a study of forecasting US inflation using univariate BPS. Chapter 4

provides a study of multiple US macroeconomic time series using multivariate

BPS. Chapter 5 applies BPS to studies of return predictability in finance. Chap-

ter 6 extends the BPS framework to solve problems of temporal misspecification,

using applications in finance. Chapter 7 extends the BPS framework for mixed

frequency forecasting and provides a study of nowcasting quarterly GDP using

monthly macroeconomic data. Finally, Chapter 8 concludes the dissertation with

open questions and discussion of potential future research.
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1

Introduction

1.1 Bayesian analysis of predictive synthesis

Recent research at the interfaces of applied/empirical macroeconomics/finance

and Bayesian methodology development reflects renewed interest in questions of

model and forecast comparison, calibration, and combination. A number of issues

promote this interest. The increased adoption of formal forecasting models that

yield full density forecasts has generated an interest in adaptive methods of density

forecast combination, leading to new “density pooling” algorithms that aim to cor-

rect forecast biases and extend traditional “ad hoc” pooling rules. From a Bayesian

perspective, formal model uncertainty and mixing analysis is “optimal” when a

closed set of models generate forecast densities; in practice, it suffers from several

limitations. First, Bayesian model combination ignores forecast and decision goals,

scoring models on purely statistical grounds; in policy or financial applications, for

example, the “best” decision models may not be highest posterior probability, or

Bayesian averaged, models. Second, time series forecasting accuracy typically dif-

fers with forecast horizon; a model that forecasts well one quarter ahead may be
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useless for several quarters ahead, calling for combination methods specific to the

forecast horizon. Related to this, formal Bayesian model probabilities inherently

score only 1-step ahead forecasting accuracy. Third, Bayesian model probabilities

converge/degenerate– typically fast in time/with sample size– and always to the

“wrong” model; this leads to lack of adaptability in sequential forecasting in time

series. Fourth, the traditional statistical framework does not easily– if at all– apply

to contexts where multiple forecasters, or groups of forecasters, generate forecast

densities from their own models and perspectives; there is a need for integration

of information about the forecasters, their anticipated biases, and– critically– rela-

tionships and dependencies among them. Note that these comments criticize the

mechanical application of formal Bayesian model probabilities, and not Bayesian

thinking and methodology per se.

Contemporary literature includes creative ideas for forecast density pooling,

defining new empirical models fitted by Bayesian methods (e.g. Terui and van

Dijk, 2002; Hall and Mitchell, 2007; Amisano and Giacomini, 2007; Hoogerheide

et al., 2010; Kascha and Ravazzolo, 2010; Geweke and Amisano, 2011, 2012; Bil-

lio et al., 2012, 2013; Aastveit et al., 2014; Kapetanios et al., 2015; Aastveit et al.,

2016; Pettenuzzo and Ravazzolo, 2016; Del Negro et al., 2016). Some of these

direct/empirical models for forecast density calibration and combination demon-

strate improved forecast performance in studies in macroeconomics and finance.

These methods advance the broader field that, since the seminal paper by Bates

and Granger (1969), has drawn on interests and expertise from business, eco-

nomics, technology, meteorology, management science, military intelligence, seis-

mic risk, and environmental risk, among other areas (e.g. Clemen, 1989; Clemen

and Winkler, 1999; Timmermann, 2004; Clemen and Winkler, 2007). Recent in-

terest in macroeconomics, driven partly by a need to improve information flows to

policy and decision makers at national and international levels, represents devel-
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opment with potential to impact more broadly. The challenge is to define formal,

reliable methodology for integrating predictive information from multiple profes-

sional forecasters and models, and sets of competing econometric models in a more

traditional statistical context.

This dissertation responds to this movement, motivated by an interest in the

question of foundational underpinnings of some of the specific algorithmic or em-

pirical models for forecast density combination recently introduced. While a new

combination rule/algorithm may demonstrate success in a specific case study, un-

derstanding potential conceptual and theoretical foundations is of interest in order

to advance broader understanding– through transparency of implicit underlying

assumptions– and hence open paths to possible methodological generalizations

of practical import. This dissertation addresses this by linking to the historical

literature on subjective Bayesian thinking about the broad field of assessing and

combining subjective probabilities. In particular, we revisit Bayesian “agent/expert

opinion analysis” (e.g. Lindley et al., 1979; West, 1984; Genest and Schervish,

1985; West, 1988; West and Crosse, 1992; West, 1992; Dawid et al., 1995; French,

2011), which requires a formal, subjective Bayesian context for treating multiple

models or forecasters as providers of “forecast data” to be used in prior-posterior

updating by a coherent decision maker (See also; West and Harrison, 1997, Sect

16.3.2).

The resulting ideas of Bayesian Predictive Synthesis (BPS) build on foundational

theory in West (1992) that defines a rather broad framework with specific func-

tional forms of posterior predictive distributions that “synthesize” sets of forecast

densities. The framework provides interpretation of traditional and recently intro-

duced pooling methods as special cases. More importantly from a practical time

series forecasting perspective, development of BPS for sequential forecasting of

time series enables the use of flexible, adaptive Bayesian dynamic models that are
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able to respond to changes in characteristics of sets of models and forecasters over

time. This dissertation discusses this idea, and develops univariate and multivari-

ate dynamic latent factor regression models (West and Harrison, 1997; Prado and

West, 2010; West, 2013) to both exemplify the framework and to define practically

relevant and useful special cases. As this dissertation demonstrates in a number

of topical time series studies, BPS has the potential to define fully Bayesian, inter-

pretable models that can adapt to time-varying biases and miscalibration of multi-

ple models or forecasters, and generate useful insights into patterns of relationships

and dependencies among them while also improving forecast accuracy.

Formalizing a coherent framework for predictive distributions, and in a broader

sense “information,” leads to broader extensions where the framework for BPS can

be utilized to build new methodologies and models that solve topical problems in

economics and finance. These problems include: dealing with mixed frequency

data, temporal misspecification, and dimension reduction. These new methodolo-

gies are discussed and practical decision problems are explored through applica-

tions.

1.2 Outline

This dissertation is organized as follows. Chapter 2 introduces the background,

foundation, and theory of BPS and how it is extended to dynamic settings for uni-

variate and multivariate time series data. The Bayesian computation that enables

dynamic BPS and a simulation study using US macroeconomic data are presented

to demonstrate the key characteristics of BPS under a controlled setting. Chapter 3

applies the univariate BPS framework to a topical US macroeconomic data study.

This study lays out the basic features and characteristics of BPS for short and long

term forecasting. Chapter 4 extends the application in Chapter 3 to a study of
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multiple US macroeconomic time series. Chapters 3 and 4 together lay down the

basic framework of how BPS is applied and utilized, on which the applications in

later chapters are built. Chapters 5-7 apply BPS to different data and problems that

are topical in economics and finance. Chapter 5 presents two studies involving re-

turn predictability in finance. The first study explores the return predictability of

US sector indices and how BPS can improve on the literature. The second study

utilizes the concept of information projection to synthesize sector information to

improve the return predictability of the US market index. Chapter 6 presents two

studies in the problem of temporal misspecification. The two studies explore tem-

poral misspecification in rolling window size and data frequency for long term

forecasting and how the BPS framework mitigates the misspecification problem

and improves forecasts. Chapter 7 proposes a new method for forecasting using

mixed frequency time series using the BPS framework. A study involving nowcast-

ing quarterly GDP using monthly macroeconomic data illustrates the features of

the proposed method. Chapter 8 concludes the dissertation with open questions

and discussion of potential future research. Finally, the Appendices provide details

of MCMC algorithms for the models and methods proposed.

5



www.manaraa.com

2

Bayesian Predictive Synthesis

2.1 Background and foundations

This dissertation develops dynamic models for time series that build on theoreti-

cal foundations in West (1992) concerned with predicting a single outcome y, or

multiple outcomes y. In time series generalizations, y, or y, will be the outcome

of a univariate/multivariate time series at one time point, typically real-valued,

although the foundational theory is general. Without loss of generality, we first

summarize the basic ideas and key historical result in the single outcome setting.

A Bayesian decision maker D is interested in predicting the outcome y and

aims to incorporate information from J individual agents (models, forecasters, or

forecasting agencies, etc.) labelled Aj, pj “ 1:Jq. To begin, D has prior ppyq, D’s

prior belief on the outcome; then each Aj provides D with forecast information

in terms of a probability density function hjpxq, where x is a quantity related to

y, the special and pertinent case being x “ y. These forecast densities represent

the individual inferences from the agents, and define the information set H “

th1p¨q, . . . , hJp¨qu now available to D. Formal subjective Bayesian analysis indicates
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that D will predict y using the implied posterior ppy|Hq from a full Bayesian prior-

to-posterior analysis, that is ,

ppy|Hq 9 ppy,Hq “ ppH|yqppyq.

Given the complex nature of H– a set of J density functions, in a setting where

there will be varying dependencies among agents as well as individual biases– a

fully specified Bayesian model ppy,Hq “ ppyqppH|yq is not easily conceptualized.

West (1992) extended prior theory (Genest and Schervish, 1985; West and

Crosse, 1992) to show that there exists a restricted class of Bayesian models ppy,Hq

under which the required posterior has the form

ppy|Hq “
ż

αpy|xq
ź

j“1:J

hjpxjqdxj (2.1)

where x “ x1:J “ px1, . . . , xJq
1 is a J´dimensional latent vector and αpy|xq a con-

ditional p.d.f. for y given x. This posterior form relies on, and must be consistent

with, D’s prior

ppyq “

ż

αpy|xqmpxqdx where mpxq “ Er
ź

j“1:J

hjpxjqs, (2.2)

the expectation in the last formula being over D’s distribution ppHq. Critically,

the representation of eqn. (2.1) does not require a full specification of ppy,Hq

(and hence ppHq), but only the prior ppyq and the marginal expectation function

mpxq of eqn. (2.2). The above theorem forms a partially specified nonparametric

representation of Bayes’ theorem, where D’s specifications for ppyq and mpxq are

consistent with a complete joint prior ppy,Hq (consistency condition).

These specifications alone do not, of course, indicate what the functional form

of αpy|xq is, which opens the path to developing models based on different speci-

fications. Key to considering this is the interpretation of the latent vector x. From

eqn. (2.1), note two implications/interpretations:
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• Suppose each agent Aj simulates a single draw from hjpxjq; label these draws

x “ x1:J . Then D can immediately simulate from the implied posterior ppy|Hq

by sampling y „ αpy|xq.

• Suppose the hypothetical agent information hjpxjq “ δxj
pxjq for j “ 1:J. That

is, Aj makes a perfect prediction y “ xj for some specified value xj. D’s

posterior is then αpy|xq.

This aids understanding of the role of αpy|xq as D’s model for converting sets of

simulated, or supposedly exact predicted values (or “oracle” values) from agents

into his/her revised predictions of y. We refer to the xj as the latent agent states.

From eqn. (2.2), note that py,xq have an implicit joint distribution with margins

ppyq and mpxq, so we can consider this is understanding the ways in which the

framework allows D to incorporate views, and historical information, about agent-

specific biases, patterns of miscalibration, inter-dependencies among agents and

their relative expertise/accuracy. The margin for latent agent states mpxq is D’s

prior expectation of the product of agent densities; an example with mpxq having

positive dependencies among a subset of the xj indicates thatD anticipates positive

concordance among the corresponding predictive densities hjp¨q of that subset of

agents.

Example 1. A class of examples arises when the implied joint prior αpy|xqmpxq is

multivariate normal or T, which easily and intuitively allows for: (i) ranges of agent

biases and mis-calibration, viewed through shifts in means and/or variances of

implied conditional distributions of individual conditional distributions pxj|yq; and

(ii) inter-dependencies, reflected in patterns of correlations and other aspects of

conditional dependence among the xj (West and Crosse, 1992; West and Harrison,

1997, Sect 16.3.2).

As a specific, conditionally normal example, suppose that the joint prior for

8
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py,xq is consistent with the margin ppyq and a conditional for px|yq that is normal

with mean µ`βy and variance matrix V ; here µ and β account for agent-specific

biases while the diagonal elements of V reflect aspects of D’s views about agent

precisions and consistency, given the bias “corrections” in µ and β. The conditional

has the form of a factor model with y as a single common factor underlying x,

and the variation among the entries in the “factor loading” vector β reflect key

aspects of dependencies among agents. The residual variance matrix V may be

diagonal, or there may be some additional inter-agent dependencies via non-zero

correlations. Together with a normal prior ppyq, this yields the agent calibration

density

αpy|xq “ Npy|F 1θ, vq with F “ p1,x1q1 and θ “ pθ0, θ1, ..., θJq
1 (2.3)

and residual variance v. The agent bias and dependence parameters are theoret-

ically mapped into the effective calibration parameters pθ, vq. In terms of the cal-

ibration and combination of agent forecast densities when available, the implied

prior on these effective parameters is all that is needed, even though that may

come indirectly through priors on pµ,β,V q. Variants involving mixing over the

scale parameters yield related conditional T distributions.

2.2 Dynamic synthesis of forecasts

The new methodological developments forming the core of this dissertation adapt

and extend the basic BPS framework summarized above to sequential forecasting

in time series. In particular, we develop dynamic extensions of conditionally nor-

mal BPS models involving time-varying parameters to characterize and formally

allow for agent-specific biases, patterns of mis-calibration, inter-dependencies, and

relative expertise/forecast accuracy as time evolves and data is processed. We do

this in the context of a scalar time series, for clarity and examples, although the
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ideas and approach are immediately extendable to multivariate cases, explored

later.

Among the connections in recent literature mentioned in Section 1, Hooger-

heide et al. (2010) and Aastveit et al. (2016) relate directly in key aspects of tech-

nical structure. In addition to opportunities for time-varying parameter models–

a special case of the broader DLM setting developed in the following sections–

these authors develop empirical methods using forecasts simulated from sets of

models. This relates directly, as BPS provides a complete theoretical framework

with implied underlying latent agent states arising from the agent distributions.

As we see below, practical Bayesian analysis of dynamic BPS models naturally in-

volves simulation of these latent states from the agent distributions in forecasting

computations; however, they must be simulated from different distributions– the

appropriate conditional posteriors– for model fitting and analysis.

2.2.1 Dynamic sequential setting: Univariate

The decision maker D is sequentially predicting a time series yt, t “ 1, 2, . . . , and at

each time point receives forecast densities from each Aj. At each time t´1, D aims

to forecast yt and receives current forecast densities Ht “ tht1pxt1q, . . . , htJpxtJqu

from the set of agents. The full information set used by D is thus ty1:t´1, H1:tu. As

data accrues, D learns about the latent relationships among agents, their forecast

and dependency characteristics, so that a Bayesian model will involve parameters

that define the BPS framework and for whichD updates information over time. The

implication for the temporal/dynamic extension of the BPS model of Section 2.1 is

that D has a time t´ 1 distribution for yt of the form

ppyt|Φt,y1:t´1,H1:tq ” ppyt|Φt,Htq “

ż

αtpyt|xt,Φtq
ź

j“1:J

htjpxtjqdxtj (2.4)
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where xt “ xt,1:J is a J´dimensional latent agent state vector at time t, αtpyt|xt,Φtq

is D’s conditional calibration p.d.f. for yt given xt, and Φt represents time-varying

parameters defining the calibration p.d.f.– parameters for which D has current be-

liefs represented in terms of a current (time t ´ 1) posterior ppΦt|y1:t´1,H1:t´1q.

The methodological focus can now rest on evaluation of models based on various

assumptions about the form of αtpyt|xt,Φtq and its defining dynamic state parame-

ters Φt. Naturally, we look to tractable dynamic linear regression models, a subset

of the broader class of dynamic linear models, or DLMs (West and Harrison, 1997;

Prado and West, 2010), as a first approach to defining a computationally accessible

yet flexible framework for dynamic BPS.

Latent Factor Dynamic Linear Models

Consider a dynamic regression for BPS calibration that extends the basic example

of eqn. (2.3) to the time series setting. That is, eqn. (2.3) becomes the dynamic

version

αtpyt|xt,Φtq “ Npyt|F
1
tθt, vtq with F t “ p1,x

1
tq
1 and θt “ pθt0, θt1, ..., θtJq

1,

(2.5)

the latter being the p1 ` Jq´vector of time-varying bias/calibration coefficients.

This defines the first component of the standard conjugate form DLM (West and

Harrison, 1997, Section 4)

yt “ F
1
tθt ` νt, νt „ Np0, vtq, (2.6a)

θt “ θt´1 ` ωt, ωt „ Np0, vtW tq (2.6b)

where θt evolves in time according to a linear/normal random walk with innova-

tions variance matrix vtW t at time t, and vt is the residual variance in predicting yt

based on past information and the set of agent forecast distributions. The residuals

11
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νt and evolution innovations ωs are independent over time and mutually indepen-

dent for all t, s.

Note that under the above dynamic setting, the fundamental specifications of

mpxtq and ppytq effectively disappear as a result of the prior-posterior updating of

DLMs. That is, D’s prior for t ` 1, ppyt`1q, is the posterior from t, ppyt|Φt,Htq,

and mpxt`1q “ Ep
ś

j“1:J htjpxtjq|Dt´1q, so D’s expectations are consistent with the

latest set of forecasts at hand. Substituting the above into eqn. (2.2), we see that

it satisfies the consistency condition and hence the theorem. This is a unique char-

acteristic of dynamic models, and care must be made in the specifications of mpxtq

and ppytq for stationary models that do not share the sequential prior-posterior

updating scheme of DLMs.

The DLM specification is completed using standard discount methods: (i) The

time-varying intercept and agent coefficients θt follow the random walk evolution

of eqn. (2.6b) where W t is defined via a standard, single discount factor specifi-

cation (West and Harrison 1997, Sect 6.3; Prado and West 2010, Sect 4.3); (ii)

The residual variance vt follows a standard beta-gamma random walk volatility

model (West and Harrison 1997, Sect 10.8; Prado and West 2010, Sect 4.3), with

vt “ vt´1δ{γt for some discount factor δ P p0, 1s and where γt are beta distributed

innovations, independent over time and independent of νs,ωr for all t, s, r. Given

choices of discount factors underlying these two components, and a (conjugate

normal/inverse-gamma) initial prior for pθ1, v1q at t “ 0, the model is fully speci-

fied.

Eqns. (2.6) define a dynamic latent factor model: the xt vectors in each F t

are latent variables. At each time, they are conceived as arising as single draws

from the set of agent densities htjp¨q, the latter becoming available at time t ´ 1

for forecasting yt. Note that the latent factor generating process has the xtj drawn

independently from their htjp¨q– based on the BPS foundational theory of eqn. (2.4)–

12
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and externally to the BPS model. That is, coupled with eqns. (2.6a,2.6b), we have

ppxt|Φt,y1:t´1,H1:tq ” ppxt|Htq “
ź

j“1:J

htjpxtjq (2.7)

for all time t and with xt,xs conditionally independent for all t ‰ s. Importantly,

the independence of the xtj must not be confused with the question of D’s model-

ing and estimation of the dependencies among agents: this is simply central and

integral, and reflected through the effective DLM parameters Φt.

While we choose a simple form of a DLM for the synthesis function αtpyt|xt,Φtq

in view of its computational simplicity and flexibility, the theory does not imply any

specific structure for the synthesis function and the decision maker is free to define

model specifications and/or informative priors based on prior information/belief.

For example, if the models behind the agents are known to be similar, the decision

maker might want to set the prior correlations to be high amongst agents; or if the

decision maker believes there are clear regime changes that favor certain agents at

certain periods of time, a regime switching approach or an indicator in the state

equation might be suitable.

We also note that most methods in the forecast combination literature focus on

forecasts averaging with point weights (in θt) that are restricted to the unit sim-

plex, as well as the weights summing to one (e.g. Clemen, 1989; Timmermann,

2004; Hall and Mitchell, 2007; Hoogerheide et al., 2010; Geweke and Amisano,

2012). To modify eqn. (2.5) so the coefficients sum to one, we can apply the

technique used in Irie and West (2016), where the sum of coefficients is always

restricted to the same value. For coefficients restricted to the unit simplex but not

summing to one, it is significantly more complicated, as we now have a non-linear

state space model in eqn. (2.6b). The benefit of having coefficients restricted to

the unit simplex is interpretability. However, beyond that, there is no real benefit

in the restriction. In the dynamic BPS setting, not only is restricting the coefficients

13
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computationally and technically more intensive, we can expect it to underperform

compared to the unrestricted DLM case presented in this dissertation. Consider,

for example, the case where all agents overestimate the quantity of interest by

some positive value. Under the restrictive case, there is no combination of coeffi-

cients that can achieve that quantity, while the unrestrictive case can with negative

coefficients. For these reasons, we utilize the unrestricted DLM instead of the con-

ventional restricted versions.

2.2.2 Dynamic sequential setting: Multivariate

For the multivariate time series yt, t “ 1, 2, . . . , with dimension q for the number

of series, the decision maker D sequentially receives forecast densities from each

agent to forecast all series at each time point. At each time t´1, D receives current

forecast densities Ht “ tht1pxt1q, . . . , htJpxtJqu from the set of agents and aims

to forecast yt, forming the full information set used by D; tY 1:t´1, H1:tu. As D

observes more information, the dependencies/biases/characteristics among agents

and for each agent are learnt, updating information over time with a Bayesian

model, with its associated parameters, that define the BPS framework.

In the temporal/dynamic domain, the BPS model of Section 2.1 implies that D

has a time t´ 1 multivariate distribution for yt of the form

ppyt|Φt,Y 1:t´1,H1:tq ” ppyt|Φt,Htq “

ż

αtpyt|X t,Φtq
ź

j“1:J

htjpxtjqdxtj (2.8)

where X t “ X t,1:J is a J ˆ q´dimensional latent agent state matrix at time t,

αtpyt|X t,Φtq is D’s conditional calibration p.d.f. for yt given X t, and Φt repre-

sents time-varying parameters defining the calibration p.d.f.– parameters for which

D has current beliefs represented in terms of a current (time t ´ 1) posterior

ppΦt|Y 1:t´1,H1:t´1q.
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At this point, the methodological focus rests on the evaluation of agents based

on various assumptions about αtpyt|X t,Φtq along with its defining dynamic state

parameters Φt. For the multivariate extension of the univariate case in Section 2.2.1,

we look to extend the seemingly unrelated regression (SUR; Zellner, 1962) to a

dynamic Bayesian framework, as a first approach to defining a computationally

accessible yet flexible framework for dynamic multivariate BPS.

Multivariate Latent Factor Dynamic Linear Models

Consider a dynamic multivariate regression for the BPS synthesis function that

extends the univariate DLM in Section 2.2.1 to the multivariate domain. We thus

specify

αtpyt|X t,Φtq “ Npyt|F
1
tθt,V tq (2.9)

with

F t “

¨

˚

˚

˚

˝

1 x1t1 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0

0 0 1 x1t2
...

... . . . ...
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 x1tq

˛

‹

‹

‹

‚

and θt “ pθt1,θt2, ...,θtqq
1,

(2.10)

where each xtq “ pxtq1, xtq2, ..., xtqJq
1 in the former is a 1ˆ J´vector of realizations

of agents states for series q and the latter is a p1 ` Jqq ˆ 1´vector of time-varying

bias/calibration coefficients, each θtq “ p1, θtq1, θtq2, ..., , θtqJq containing the coeffi-

cients related to the agents’ forecasts of series q. This defines the first component

of the dynamic multivariate DLM

yt “ F
1
tθt ` νt, νt „ Np0,V tq, (2.11a)

θt “ θt´1 ` ωt, ωt „ Np0,W tq (2.11b)

where θt evolves in time according to a linear/normal random walk with innova-

tions variance matrix W t at time t, and V t is the residual variance in predicting yt

15



www.manaraa.com

based on past information and the set of agent forecast distributions.

Similar to the univariate DLM with discount stochastic volatility used in Sec-

tion 2.2.1, the specification for the above multivariate DLM is completed using

standard discount methods. As with the univariate DLM, the time-varying inter-

cept and agent coefficients θt follow the random walk evolution of eqn. (2.11b)

whereW t is defined via a standard, single discount factor specification (Prado and

West 2010, Chap 10). The residual variance νt follows a standard inverse Wishart

random walk volatility model with some discount factor δ P p0, 1s. Given choices of

discount factors underlying these two components, and a initial prior for pθ1,V 1q

at t “ 0, the model is fully specified.

The above formulation in eqns. (2.11) define a dynamic multivariate latent fac-

tor model, where each agent forecast vector, xtq, in F t are latent variables. At each

time, the latent variables are realized as single draws from the set of agent densi-

ties htjp¨q, becoming available to D at t´1 for forecasting yt. As with the univariate

case, xt is drawn from htjp¨q independently between agents, based on the BPS foun-

dational theory of eqn. (2.8). This leads to, coupled with eqns. (2.11a,2.11b), the

conditional posterior for the latent states,

ppX t|Φt,Y 1:t´1,H1:tq ” ppX t|Htq “
ź

j“1:J

htjpxtjq (2.12)

for all time t and with X t,Xs conditionally independent for all t ‰ s. Though the

theory in eqn. (2.4) implies independence of xtj, this must not be confused with the

D’s modeling and estimation of the dependencies among agents. This dependence

is central and integral, and is reflected through the effective DLM parameters Φt.

In particular, the multivariate DLM specification above formulates the dependence

among agents within and across series.

One aspect to note about the specification for eqns. (2.11) is that this does not

provide a conjugate prior-posterior updating as in the case of univariate DLMs. For
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this to be conjugate, the above needs to be in the form of an exchangeable time

series (Prado and West 2010, Chap 10). That is,

F t “ p1,x
1
t1,x

1
t2, ¨ ¨ ¨ ,x

1
tJq and Θt “ pθ

1
t1,θ

1
t2, ...,θ

1
tqq
1, (2.13)

where all of the agents’ forecasts for all series feeds into D’s forecast of each series

(i.e. the latent factors are the same across all series). While this is computationally

superior to eqns. (2.11), it lacks interpretability and practicality. In the exchange-

able time series framework, all forecasts across agents and across series feed into

the forecasts of each series (e.g. forecasts of inflation feeding into the forecast of

unemployment and vice versa). While we can assume, and expect, the latent states

across agents and series to be dependent, we cannot assume that forecasts for other

series to positively improve the forecast of another series directly. Eqns. (2.11), on

the other hand, take into account the inter-agent dependencies across and between

series that we expect (in the variance matrix W t), while filtering out non-direct

forecasts from each series, focusing on the forecasts that matter. Additionally, F t is

a 1`Jq-dimension vector, which is often quite large and causes practical problems

with the estimation. In comparison, eqn. (2.11) has a 1 ` J-dimensional vector

per series. For these reasons, we have selected the specification in eqns. (2.11) for

the synthesis function. That being said, we do not conclude that an exchangeable

time series or more complicated Bayesian VARs should not be used. Theorem 2.8

does not imply the form of the synthesis function, and exploration of different

specifications should be encouraged.

2.2.3 Multi-step ahead synthesis

Forecasting over multiple horizons is often of equal or greater importance than

1-step ahead forecasting. Economic policy makers, for example, forecast/assess

macroeconomic variables over a year or multiple years, drawing from their own
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forecast models, judgmental inputs, other economists and forecasters, in order

to advise policy decisions. However, forecasting over longer horizons is typically

more difficult than over shorter horizons, and models calibrated on the short-term

basis can often be quite poor in the longer-term. As noted in Chapter 1, fitting

of time series models is inherently based on 1-step ahead, as DLM (and other)

model equations make explicit. When multi-step ahead forecasting is primary, new

ideas for forecast calibration and combination are needed. BPS provides a natural

and flexible framework to synthesize forecasts over multiple horizons, with poten-

tial to improve forecasting at multiple horizons simultaneously, as we now discuss

(for univariate synthesis, though multivariate synthesis directly follows from the

results).

Direct projection for multi-step forecasting. At time t, the agents provide k-

step ahead forecast densities ht,1:Jpxt`kq. The direct approach follows traditional

DLM updating and forecasting via simulation as for 1-step ahead. That is: (i)

project the BPS model forward from time t to t ` k by simulating the dynamic

model parameters Φt`1,Φt`2, . . . ,Φt`k using sequential, step ahead extension of

the 1-step case; (ii) draw independently from each of the ht,1:Jpxt`kq to give a

sampled vector xt`k; then (iii) draw yt`k from the conditional normal given these

sampled parameters and states. While this is theoretically correct, it fails to up-

date/calibrate based on the horizon of interest, relying wholly on the model as

fitted– with its essential basis in 1-step forecasting accuracy– even though D may

be mainly interested in forecasting several steps ahead.

BPSpkq for customized multi-step forecasting. BPS is open to models customized

to forecasting goals, and so provides D a strategy to focus modeling on the hori-

zon of interest. This involves a trivial modification of Section 2.2.1 in which the
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model at time t ´ 1 for predicting yt changes as follows. With a specific forecast

horizon k ą 1, modify the BPS so that the agents’ k-step ahead forecast densities

made at time t ´ k, i.e., ht´k,jpxtjq replace htjpxtjq in the resulting model analysis.

This changes the interpretation of the dynamic model parameters tθt, vtu to be ex-

plicitly geared to the k-step horizon. Bayesian model fitting then naturally “tunes”

the model to the horizon k of interest. Forecasting the chosen k-steps ahead now

simply involves extrapolating the model via simulation, as above, but now in this

modified and horizon-specific BPS model.

We denote this customized model strategy by BPSpkq to distinguish it from the

direct extrapolation of BPS. Note that this is fundamentally different from the tra-

ditional method of model extrapolation as it directly updates, calibrates, and learns

using the horizon of interest. The applied studies in subsequent chapters bear out

the view that this can be expected to improve forecasting accuracy over multiple

horizons. One cost, of course, is that a bank of BPS models is now required for any

set of horizons of interest; that is, different models will be built for different hori-

zons k, so increasing the computational effort required. If the model specification

of the synthesis function is correct, we can expect that the direct extrapolation of

BPS to equal BPSpkq, i.e. the estimated parameters Φ are equivalent. However,

this is rarely– if ever– the case in real data applications.

We further note contextual relevance of this perspective in applications when D

is a consumer of forecasts from groups, agencies or model developers. Such agents

may use different models, data, advisors, and approaches for different horizons.

When the forecast generating models/methods are known, D may redefine the

BPS model accordingly; however, generally in practice these underlying models,

strategies, data, and advisors will not be wholly known and understood.
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2.3 Bayesian computation

2.3.1 Univariate synthesis

At any current time t, D has available the history of the BPS analysis to that point,

including the now historical information ty1:t,H1:tu. Over times 1:t, the BPS anal-

ysis will have involved inferences on both the latent agent states x˚ as well as the

dynamic BPS model parameters Φ˚. Importantly, inferences on the former provide

insights into the nature of dependencies among the agents, as well as individual

agent forecast characteristics. The former addresses key and topical issues of over-

lap and redundancies among groups of forecasting models or individuals, as well

as information sharing and potential herding behaviors within groups of forecast-

ers. The “output” of full posterior summaries for the xt series is thus a key and

important feature of BPS.

For posterior analysis, the holistic view is that D is interested in computing the

posterior for the full set of past latent agent states (latent factors) and dynamic pa-

rameters tX1:t,Φ1:tu, rather than restricting attention to forward filtering to update

posteriors for current values txt,Φtu; the latter is of course implied by the former.

This analysis is enabled by Markov chain Monte Carlo (MCMC) methods, and then

forecasting from time t onward follows by theoretical and simulation-based ex-

trapolation of the model; both aspects involve novelties in the BPS framework but

are otherwise straightforward extensions of traditional methods in Bayesian time

series (West and Harrison 1997, Chap 15; Prado and West 2010).

Posterior Computations via MCMC. The dynamic latent factor model structure

of eqns. (2.6a,2.6b,2.7) leads easily to a two-component block Gibbs sampler for

the latent agent states and dynamic parameters. These are iteratively resimulated

from the two conditional posteriors noted below, with obvious initialization based
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on agent states drawn independently from priors h˚p˚q.

First, conditional on values of agent states, the next MCMC step draws new pa-

rameters from ppΦ1:t|X1:t,y1:tq. By design, this is a discount-based dynamic linear

regression model, and sampling uses the standard forward filtering, backward sam-

pling (FFBS) algorithm (e.g. Frühwirth-Schnatter 1994; West and Harrison 1997,

Sect 15.2; Prado and West 2010, Sect 4.5).

Second, conditional on values of dynamic parameters, the MCMC draws new

agent states from ppX1:t|Φ1:t,y1:t,H1:tq. It is immediate that the xt are conditionally

independent over time t in this conditional distribution, with time t conditionals

ppxt|Φt, yt,Htq 9Npyt|F
1
tθt, vtq

ź

j“1:J

htjpxtjq where F t “ p1, xt1, xt2, ..., xtJq
1.

In cases when each of the agent forecast densities is normal, this yields a multivari-

ate normal for xt that is trivially sampled. In other cases, this will involve either a

Metropolis-Hastings simulator or an augmentation method. A central, practically

relevant case is when agent forecasts are T distributions; each htjp¨q can be rep-

resented as a scale mixture of normals, and augmenting the posterior MCMC to

include the implicit underlying latent scale factors generates conditional normals

for each xt coupled with conditional inverse gammas for those scales. This is again

a standard MCMC approach and much used in Bayesian time series, in particular

(e.g. Frühwirth-Schnatter 1994; West and Harrison 1997, Chap 15).

Forecasting 1-Step Ahead. At time t we forecast 1-step ahead by generating

“synthetic futures” from the BPS model, as follows: (i) For each sampled Φt from

the posterior MCMC above, draw vt`1 from its discount volatility evolution model,

and then θt`1 conditional on θt, vt`1 from the evolution model eqn. (2.6b)– this

gives a draw Φt`1 “ tθt`1, vt`1u from ppΦt`1|y1:t,H1:tq; (ii) Draw xt`1 via indepen-

dent sampling of the ht`1,jpxt`1,jq, pj “ 1:Jq; (iii) Draw yt`1 from the conditional
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normal of eqn. (2.6a) given these sampled parameters and agent states. Repeat-

ing this generates a random sample from the 1-step ahead forecast distribution for

time t` 1.

2.3.2 Multivariate synthesis

At any current time t, D has the now historical information tY 1:t,H1:tu, the past

observed data and agents’ forecast of that data, with the history of the BPS anal-

ysis up until that point. Up until that time, the BPS analysis will have inferred on

both the latent agent states X˚ and the dynamic BPS model parameters Φ˚. The

former, importantly, provides insight into the dependencies, biases, and other char-

acteristics pertaining to Y 1:t, among agents and individual agents. Thus, the full

posterior summaries for the multivariate X t contains these characteristics among

and within the multiple series; a key feature of BPS. This inference is topical, as is-

sues of herding (overlap and redundancies) among groups of agents (either models

or individuals) is of practical importance, and understanding how these character-

istics change over time and across series is key.

The posterior analysis is enabled by Markov chain Monte Carlo (MCMC) meth-

ods, followed by forecasting from time t onward utilizing the theoretical and simu-

lation based extrapolation of the model. That is to say, D is interested in inference

on the full set of past latent agent states (latent factors) and dynamic parame-

ters tX1:t,Φ1:tu, as well as forward filtering to update posteriors for current values

tX t,Φtu, and posterior computation enables this. These aspects of posterior com-

putation extend the MCMC method used for the univariate case, though there are

specific modifications in terms of fitting the model in eqns. (2.11).

Posterior Computations via MCMC. The multivariate dynamic latent factor model

structure of eqns. (2.11a,2.11b,2.12) leads easily to a three-component block Gibbs
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sampler for the latent agent states, dynamic coefficient parameters, and dynamic

volatility parameters. The components are iteratively resampled from the three

conditional posteriors noted below, initialized given agent states drawn indepen-

dently from priors h˚p˚q.

First, conditional on the agent states and residual volatility, the MCMC step

draws new dynamic coefficient parameters from ppΘ1:t|X1:t,Y 1:t,V 1:tq. Given the

residual volatility, V 1:t, this mirrors the standard discount-dynamic multivariate

dynamic linear regression model, and is thus sampled using an extension of the

forward filtering, backward sampling (FFBS) algorithm (e.g. Prado and West 2010,

Chap 10).

Second, due to the model specification, the MCMC step draws new dynamic

volatility parameters, ppV 1:t|X1:t,Y 1:t,Θ1:tq, given the agent states and dynamic

coefficient parameters. This is done using standard inverse Wishart analysis with

discount stochastic volatility. Note that the univariate dynamic latent agent model

(and the exchangeable time series framework) enjoys full conditionally conjugate

analysis and the joint posterior ppΦ1:t|X1:t,Y 1:tq can be obtained directly, merging

the above two steps into one.

Third, conditional on values of dynamic parameters, the MCMC draws new

agent states from ppX1:t|Φ1:t,Y 1:t,H1:tq. As with the univariate case, X t are condi-

tionally independent over time t in this conditional distribution, with time t condi-

tionals

ppX t|Φt,yt,Htq 9Npyt|F
1
tθt,V tq

ź

j“1:J

htjpxtjq

where

F t “

¨

˚

˚

˚

˝

1 x1t1 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0

0 0 1 x1t2
...

... . . . ...
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 x1tq

˛

‹

‹

‹

‚

.
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In cases when all of the agents’ forecasts are multivariate normal, the posterior

is a multivariate normal that is trivially sampled using the properties of condi-

tional normals. For a more central and practically important case of forecasts be-

ing multivariate T distributions, each htjp¨q can be represented as a scale mixture

of normals, and augmenting the posterior MCMC to include the implicit under-

lying latent scale factors generates conditional multivariate normals for each X t

coupled with conditional inverse gammas for those scales. For non-normal fore-

casts, where ppX t|Φt,yt,Htq 9 Npyt|F
1
tθt,V tq, is not analytically tractable, we

can either use a Metropolis-Hastings algorithm or importance sampling scheme to

sample ppX t|Φt,yt,Htq. Further discussion can be found in Appendix A.

Forecasting 1-Step Ahead. Forecasting 1-step ahead is done in the same fashion

as the univariate case. At time t we forecast 1-step ahead by generating “synthetic

futures” from the BPS model, as follows: (i) For each sampled Φt from the posterior

MCMC above, draw V t`1 from its discount volatility evolution model, and then

θt`1 conditional on θt,V t`1 from the evolution model eqn. (2.6b)– this gives a

draw Φt`1 “ tθt`1,V t`1u from ppΦt`1|Y 1:t,H1:tq; (ii) Draw X t`1 via independent

sampling of the ht`1,jpxt`1,jq, pj “ 1:Jq; (iii) Draw yt`1 from the conditional normal

of eqn. (2.6a) given these sampled parameters and agent states. Repeating this

generates a random sample from the 1-step ahead forecast distribution for time

t` 1.

2.4 Simulation study

In this simulated example, we sample synthetic data using the macroeconomic

data used in Chapter 3 (three quarterly macro series: annual inflation rate ppq,

short-term nominal interest rate prq, and unemployment rate puq in the US econ-

omy from 1961/Q1 to 2014/Q4). From the data we form four models, M1- pt´1;
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M2- pt´3, rt´3, ut´3; M3- pt´3; M4- pt´1, rt´1, ut´1, where each subscript indicates

the lag(s) of data used, that generate four unique time series with the following

constant coefficients on the intercept and factor(s) in the models:

M1- p0.05, 0.95q,

M2- p0.1, 1,´0.2,´0.1, 0.2,´0.1, 0.05,´0.3, 0.3, 0.05q,

M3- p0.2, 1.3,´0.3,´0.2q,

M4- p0.1, 0.9, 0.1,´0.1q,

with a constant standard deviation of 0.1 for the observation error. The data, yt

is generated by switching between the generated four unique time series with a

stationary probability of 85% and transition probability of 5% each.

Agents

Each M* is a standard DLM so that model fitting and generation of forecasts is

routine. Prior specifications for the DLM state vector and discount volatility model

in each is based on θ0|v0 „ Np0, v0Iq and 1{v0 „ Gp1, 0.01q, using the usual pθ, vq

DLM notation (West and Harrison, 1997, Chap 4). Each agent model uses standard

discount factor pβq specification for state evolution variances and discount factor

pδq for residual volatility; we use pβ, δq “ p0.99, 0.95q in each of these agent models.

The DLM-based forecast densities ht´k,jpxtjq are then predictive T distributions.

BPS specifications

For the dynamic BPS models for forecast horizons k “ 1 and k “ 4, we take initial

priors as θ0 „ Npm, Iq with m “ p0,11{pq1 and 1{v0 „ Gp5, 0.01q. BPS for 1-step

ahead forecasting is based on pβ, δq “ p0.95, 0.99q, while BPSp4q, customized to
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4-quarter ahead forecasting, uses θ0 „ Npm, 10´4Iq and pβ, δq “ p0.99, 0.99q. Dif-

ferences by forecast horizon echo earlier discussion about different model choices

being relevant to different forecast goals.

Comparison of out-of-sample forecast performance

We compare forecasts from BPS with standard Bayesian model uncertainty analy-

sis (that more recently has been referred to as Bayesian model averaging– BMA) in

which the agent densities are mixed with respect to sequentially updated model

probabilities (e.g. Harrison and Stevens, 1976; West and Harrison, 1997, Sect

12.2). In addition, we compare with simpler, equally-weighted averages of agent

forecast densities: using both linear pools (equally-weighted arithmetic means of

forecast densities) and logarithmic pools (equally-weighted harmonic means of

forecast densities), with some theoretical underpinnings (e.g. West 1984).

For point forecasts from all methods, we compute and compare mean squared

forecast errors (MSFE) over the forecast horizons of interest. In comparing den-

sity forecasts with BPS, we also evaluate log predictive density ratios (LPDR); at

horizon k and across time indices t, this is

LPDR1:tpkq “
ÿ

i“1:t

logtpspyt`k|y1:tq{pBPSpyt`k|y1:tqu

where pspyt`k|y1:tq is the predictive density under model or model combination ag-

gregation strategy indexed by s, compared against the corresponding BPS forecasts

at this horizon.

Table 2.1 summarizes the forecast capabilities for each model and strategy over

the whole period. For 1-step ahead forecasts, in terms of MSFE1:T , BPS performs

17.77% better than the best individual model (M3) and 17.69% better than the

best aggregation strategy (BMA) (Fig. 2.1). Both models and strategies work simi-

larly well, with aggregation strategies being on par or slightly better than the best
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forecast models. Likewise, the results of LPDR1:T shows clearly that BPS outper-

forms the other methods (Fig. 2.2). Further investigation of the coefficients (see

Figure 2.3), shows that BPS is successful in correctly choosing the best model (M3)

but not degenerative like BMA (see Figure 2.4), showing that BPS is superior in

adaptability and flexibility, which leads to its improved predictive performance.

The results for the 4-step ahead forecasts are indicative of three things: (1)

BPS performs slightly worse than the best individual model (M2: -2.48%) and

the best aggregation strategy (BMA: -2.06%), (2) BPS performs worse than most

in terms of distribution forecasts, and (3) BPSpkq is superior in both point and

distribution forecasts compared to BPS (9.66% improvement in terms of MSFE1:T ).

One explanation for the poor performance in LPDR1:T is that BPS overly optimizes

its parameters to the horizon it models, thus giving a tighter estimate (smaller

standard deviation; see Figure 2.5) that does not account for the poor long term

predictive abilities of the models. Since BPSpkq can directly model the forecasts

at the horizon of interest, it is able to take into account the forecast uncertainties

that come with forecasting long horizons evidenced by the drastically improved

LPDR1:T .
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Table 2.1: Simulated data forecasting 1990/Q1-2014/Q4: 1- and 4-step ahead
forecast evaluations comparing mean squared forecast errors and log predictive
density ratios for the T “ 100 quarters. Note: LPDR1:T is relative to BPS.

MSFE1:T LPDR1:T

1-step 4-step 1-step 4-step BPSp4q
M1 0.06807 0.34387 -14.16 12.53 -55.63
M2 0.07734 0.29409 -17.87 44.48 -23.68
M3 0.06728 0.32987 -10.85 11.84 -56.33
M4 0.08902 0.38116 -25.88 27.25 -40.92
BMA 0.06721 0.29534 -10.93 43.56 -24.61
LinP 0.06860 0.33018 -15.34 36.92 -31.25
LogP 0.06765 0.32942 -12.87 25.43 -42.74
BPS 0.05532 0.30156 - - -
BPS(k) - 0.27242 - - -

FIGURE 2.1: Simulated data forecasting 1990/Q1-2014/Q4: Mean squared 1-step
ahead forecast errors MSFE1:tp1q sequentially revised at each of the t “ 1:100 quar-
ters.
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FIGURE 2.2: Simulated data forecasting 1990/Q1-2014/Q4: 1-step ahead log pre-
dictive density ratios LPDR1:t sequentially revised at each of the t “ 1:100 quarters.
The baseline at 0 over all t corresponds to the standard BPS model.

FIGURE 2.3: Simulated data forecasting 1990/Q1-2014/Q4: On-line posterior
means of BPS model coefficients sequentially computed at each of the t “ 1:100
quarters.
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FIGURE 2.4: Simulated data forecasting 1990/Q1-2014/Q4: On-line model proba-
bilities for BMA sequentially computed at each of the t “ 1:100 quarters.

FIGURE 2.5: Simulated data forecasting 1990/Q1-2014/Q4: 4-step ahead forecast
standard deviations sequentially computed at each of the t “ 1:100 quarters.
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3

Univariate BPS: US Inflation

3.1 US inflation forecasting

Inflation is one of the key metrics for the state of economy. Decision makers,

from economic policy makers to financial portfolio managers to business man-

agers, heavily rely on inflation projections to make decisions on monetary policy,

portfolio weights, and product pricing. In order to make informed evidence-based

decisions for the future, decision makers consult forecasters, models, etc. for in-

flation forecasts, to be better informed on the state of the economy, market, and

demand. Due to its importance, there has been a long history of research, from

both researchers and practitioners, on the subject of forecasting inflation (Stock

and Watson, 1999, 2007; Stella and Stock, 2012; Belmonte et al., 2014). For our

application of univariate BPS, we forecast inflation using a topical macroeconomic

data set and models, echoing the decision process of economic policy makers.

3.1.1 Data

We analyze quarterly US macroeconomic data, focusing on forecasting inflation

rates with both 1-quarter and 4-quarter ahead interests. The study involves three
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quarterly macro series: annual inflation rate ppq, short-term nominal interest rate

prq, and unemployment rate puq in the US economy from 1961/Q1 to 2014/Q4,

a context of topical interest (Cogley and Sargent, 2005; Primiceri, 2005; Koop

et al., 2009; Nakajima and West, 2013a). The inflation rate is the annual percent-

age change in a chain-weighted GDP price index, the interest rate is the yield on

three-month Treasury bills, and the unemployment rate is seasonally adjusted and

includes all workers over 16 years of age. Prior studies (e.g. Nakajima and West,

2013a) use data over the period of 1963/Q1-2011/Q4; we extend this to more

recent times, 1961/Q1 to 2014/Q4, shown in Fig. 3.1. We focus on forecasting

inflation using past values of the three indices as candidate predictors underlying

a set of four time series models– the J “ 4 agents– to be evaluated, calibrated, and

synthesized. The time frame includes key periods that warrant special attention:

the early 1990s recession, the Asian and Russian financial crises in the late 1990s,

the dot-com bubble in the early 2000s, and the sub-prime mortgage crisis and great

recession of the late 2000s. These periods exhibit sharp shocks to the US economy

generally, and test the predictive ability of any models and strategies under stress.

For any forecast calibration and aggregation strategy to be effective and useful,

its predictive performance must be robust under these conditions; most traditional

macroeconomic models suffer significant deficiencies in such times.

3.1.2 Agents and BPS specification

The J “ 4 agents represent the two major structures of time series forecast mod-

els: factor and lag. Labeling them M*, the agent models for inflation yt ” pt

use predictors: M1- pt´1; M2- pt´3, rt´3, ut´3; M3- pt´3; M4- pt´1, rt´1, ut´1. Thus,

each has a time-varying autoregressive term in inflation rate p, while two also

have dynamic regressions on lagged interest rate r and unemployment rate u, the

differences being in lags chosen and model complexity. In each, residual volatil-
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FIGURE 3.1: US inflation rate forecasting 1990/Q1-2014/Q4: US macroeconomic
time series (indices ˆ100 for % basis): annual inflation rate ppq, short-term nomi-
nal interest rate prq, and unemployment rate puq.

ity follows a standard beta-gamma random walk. Each M* is a standard DLM so

that model fitting and generation of forecasts is routine. While these models are

simple compared to more sophisticated models used to forecast inflation (such as

Stock and Watson (1999, 2007); Stella and Stock (2012); Belmonte et al. (2014)

as well as Bayesian VARs seen in Nakajima and West (2013a)), part of the utility

and appeal of predictive synthesis, and in forecast combinations in general, is in

gaining improvements using relatively simple models and not resorting to com-

plicated models that have technical/computational difficulties. Additionally, we

can expect that adding these sophisticated models to the set of agents will only

improve the synthesis. Prior specifications for the DLM state vector and discount

volatility model in each is based on θ0|v0 „ Np0, v0Iq and 1{v0 „ Gp1, 0.01q, us-

ing the usual pθ, vq DLM notation (West and Harrison, 1997, Chap 4). Each agent

model uses standard discount factor pβq specification for state evolution variances

and discount factor pδq for residual volatility; we use pβ, δq “ p0.99, 0.95q in each
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of these agent models. The DLM-based forecast densities ht´k,jpxtjq are then those

of predictive T distributions. MCMC-based model fitting adapts to introduce latent

scale factors as noted in Chapter 2.

In the dynamic BPS models for forecast horizons k “ 1, we take initial priors

as θ0 „ Npm, Iq with m “ p0,11{pq1 and 1{v0 „ Gp5, 0.01q. BPS for 1-step ahead

forecasting is based on pβ, δq “ p0.95, 0.99q. BPSp4q, customized to 4-quarter ahead

forecasting as discussed in Section 2.2.3, uses θ0 „ Npm, 10´4Iq and pβ, δq “

p0.99, 0.99q. Differences by forecast horizon echo earlier discussion about different

model choices being relevant to different forecast goals.

In general, discount factors should be set between 0.9 ´ 0.99 for both β and

δ. If the decision maker believes that the synthesis will benefit from weights that

are extremely flexible (e.g. where good agents change over multiple periods of

time), the decision maker can specify a lower discount factor β. In this example,

we can assume that the simple models used will significantly underperform in the

long term forecasts, as they are designed to fit to short term dynamics. For this

reason, we set a higher discount factor β to smooth out the parameters because we

can expect that there is very little signal to extract from the agents. Furthermore,

these discount factors can be estimated via sampling, though it adds an extra level

of computational complexity.

Another key specification is the prior mean of θ0, m. This can be chosen based

on the prior belief of the decision maker, for example, when there are strong pref-

erences in agents or there is a lack of data for calibration, though it is sensible to

set it so that the coefficients in m on the agents sum to one.

Looking at the behavior of the parameters during the learning period provides

insight into what prior specifications D should use for the analysis. For example,

if the coefficients look jumpy/static during the learning period, it might be wise to

increase/decrease the discount factor β to achieve a suitable level of adaptability.
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We have explored analyses across ranges of priors and discount factors, and

chosen these values as they lead to good agent-specific and BPS forecasting ac-

curacy; conclusions with respect to BPS do not change materially with different

values close to those chosen for the summary examples.

3.1.3 Data analysis and forecasting

The 4 agent models are analyzed and synthesized as follows. First, the agent mod-

els are analyzed in parallel over 1961/Q1-1977/Q1 as a training period, simply

running the DLM forward filtering to the end of that period to calibrate the agent

forecasts. This continues over 1977/Q2-1989/Q4 now accompanied by the cali-

bration of the other forecast combination methods. Also, at each quarter t during

this period, the MCMC-based BPS analysis is run using data from 1977/Q2 up to

time t; that is, we repeat the analysis with an increasing “moving window” of past

data as we move forward in time. We do this for the traditional 1-step focused BPS

model, and– separately and in parallel– for a 4-step ahead focused BPSp4q model,

as discussed in Section 2.2.3. This continues over the third period to the end of

the series, 1990/Q1-2014/Q4; now we also record and compare forecasts as they

are sequentially generated. This testing period spans over a quarter century, and

we are able to explore predictive performance over periods of drastically varying

economic circumstances, check robustness, and compare benefits and characteris-

tics of each strategy. Out-of-sample forecasting is thus conducted and evaluated in

a way that mirrors the realities facing decision and policy makers.

3.1.4 Forecast accuracy and comparisons

We compare forecasts from BPS with BMA, in which the agent densities are mixed

with respect to sequentially updated model probabilities (e.g. Harrison and Stevens,

1976; West and Harrison, 1997, Sect 12.2), and a more recent “density combina-
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tion” method of Billio et al. (2013) using the DeCo package (Casarin et al., 2015).

In addition, we compare with simpler, equally-weighted averages of agent forecast

densities: using both linear pools (equally-weighted arithmetic means of forecast

densities) and logarithmic pools (equally-weighted harmonic means of forecast

densities), with some theoretical underpinnings (e.g. West 1984). For point fore-

casts from all methods, we compute and compare mean squared forecast errors

(MSFE) over the forecast horizons of interest. In comparing density forecasts with

BPS, we also evaluate log predictive density ratios (LPDR); at horizon k and across

time indices t, this is

LPDR1:tpkq “
ÿ

i“1:t

logtpspyt`k|y1:tq{pBPSpyt`k|y1:tqu

where pspyt`k|y1:tq is the predictive density under model or model combination

aggregation strategy indexed by s, compared against the corresponding BPS fore-

casts at this horizon. As used by several authors recently (e.g. Nakajima and West,

2013a; Aastveit et al., 2016), LPDR measures provide a direct statistical assess-

ment of relative accuracy at multiple horizons that extend traditional 1-step fo-

cused Bayes’ factors. They weigh and compare dispersion of forecast densities

along with location, so elaborate on raw MSFE measures; comparing both mea-

surements, i.e., point and density forecasts, gives a broader understanding of the

predictive abilities of the different strategies.

3.2 Dynamic BPS and forecasting

Comparing predictive summaries over the out-of-sample period, BPS improves

forecasting accuracy relative to the 4 agent models, and dominates BMA, DeCo,

and the pooling strategies; see numerical summaries in Table 3.1. Looking at point

forecast accuracy, BPS exhibits improvements of no less than 10% over all models

and strategies for 1- and 4-step ahead forecasts (BPS(k) at k “ 4 for the latter). As
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might be expected, BPS substantially improves characterization of forecast uncer-

tainties as well as adaptation in forecast locations, reflected in the LPDR measures.

Further, our expectations of improved multi-step forecasting using horizon-specific

BPS are borne out: direct projection of the standard BPS model to 4-step ahead

forecasts perform poorly, mainly as a result of under-dispersed forecast densities

from each agent. In contrast, BPSp4q model performs substantially better, being

customized to the 4-quarter horizon.

We further our analysis by reviewing summary graphs showing aspects of analy-

ses evolving over time during the testing period, a period that includes challenging

economic times that impede good predictive performance. We take the 1-step and

4-step contexts in sequence.

Table 3.1: US inflation rate forecasting 1990/Q1-2014/Q4: Forecast evaluations
for quarterly US inflation over the 25 years 1990/Q1-2014/Q4, comparing mean
squared forecast errors and log predictive density ratios for this T “ 100 quar-
ters. The column % denotes improvements over BPS and BPSpkq for 1- and 4-step
ahead forecasts, respectively. Note: LPDR1:T is relative to BPS and BPSp4q, for each
column, and nonexistent for DeCo due to lack of analytic predictive distributions.

MSFE1:T LPDR1:T

1-step % 4-step % 1-step 4-step BPSp4q
M1 0.0634 -23.83 0.4227 -14.68 -13.84 71.43 -94.56
M2 0.0598 -16.80 0.4156 -12.75 -8.55 68.16 -97.82
M3 0.0616 -20.31 0.4208 -14.16 -9.06 60.08 -105.90
M4 0.0811 -58.40 0.4880 -32.39 -22.71 67.46 -98.53
BMA 0.0617 -20.51 0.4882 -32.45 -9.00 65.65 -100.33
LinP 0.0575 -12.30 0.4275 -15.98 -8.84 85.50 -80.48
LogP 0.0579 -13.09 0.4275 -15.98 -7.86 68.23 -97.75
DeCo 0.0571 -11.52 0.4156 -12.75 - - -
BPS 0.0512 - 0.4001 -8.55 - - -
BPSp4q - - 0.3686 - - - -
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3.2.1 1-step ahead forecasting

Figs. 3.2-3.6 summarize sequential analysis for 1-step forecasting. Fig. 3.2 shows

the 1-step ahead measures MSFE1:tp1q for each time t. BPS almost uniformly dom-

inates, except at the beginning of the time period where the MSFE is somewhat

unstable. Four “shock” periods are notable and increase forecast errors: 1992/Q3-

Q4 (early 90s recession), 1997/Q4-1998/Q1 (Asian and Russian financial crisis),

2001/Q2-2003/Q1 (dot-com bubble), and 2009/Q2-2010/Q1 (sub-prime mort-

gage crisis). Even under the influence of these shocks, BPS is able to perform

well with most of its improvements over other models and strategies coming from

swift adaptation. The sub-prime mortgage crisis period highlights this, with MSFE

staying relatively level under BPS while the others significantly increase.

Fig. 3.3 confirms that BPS performs uniformly better than, or on par with, the

other models and BMA based on LPDR measures that measure relative distribu-

tional form and dispersion of forecast densities as well as location. Major shocks

FIGURE 3.2: US inflation rate forecasting 1990/Q1-2014/Q4: Mean squared 1-
step ahead forecast errors MSFE1:tp1q sequentially revised at each of the t “ 1:100
quarters.
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FIGURE 3.3: US inflation rate forecasting 1990/Q1-2014/Q4: 1-step ahead log
predictive density ratios LPDR1:tp1q sequentially revised at each of the t “ 1:100
quarters. The baseline at 0 over all t corresponds to the standard BPS model.

and times of increased volatility have substantial impact on the relative perfor-

mance, again most notable at the beginning of the sub-prime mortgage crisis. BPS

is able to adapt to maintain improved forecasting performance both in terms of

point forecasts and risk characterization, a key positive feature for decision mak-

ers who are tasked with forecasting risk and quantiles, especially under critical

situations such as economic crises.

Fig. 3.4 compares on-line 1-step ahead forecast standard deviations. Economic

(and other) decision makers are often faced with forecasts that have large forecast

uncertainties; while honest in reflecting uncertainties, resulting optimal decisions

may then be so unreliable as to be useless. Large economic models that require

complex estimation methods, but have useful properties for policy makers, often

produce large forecast standard deviations that might come from the complexity of

the model, data, estimation method, or all of the above without necessarily know-

ing the source of uncertainty. BPS, on the other hand, synthesizes the forecasts
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FIGURE 3.4: US inflation rate forecasting 1990/Q1-2014/Q4: 1-step ahead fore-
cast standard deviations sequentially computed at each of the t “ 1:100 quarters.

and by doing so, has the ability to decrease forecast uncertainties relative to the

agents, without overly underestimating real risks; this is evident in the example

here, where BPS leads the agents (and other strategies) in terms of LPDR perfor-

mance. Fig. 3.4 shows that some part of this comes from generally reduced forecast

uncertainties– coupled with more accurate point forecasts– at this 1-step horizon.

We caution that reduced uncertainties are not always expected or achieved, as

exemplified below.

Finally, BMA– characteristically– effectively degenerated, with posterior proba-

bilities increasingly favoring agent M3, over the prior period 1977/Q2-1989/Q4;

thus, at the start of the test period, BMA-based forecast densities are very close

to those from M3 alone. BPS, on the other hand, allows for continual adaptation

as agent models change in their relative forecasting abilities; over the test period,

BPS tends more highly weight agent M2, notable in terms of the on-line estimates

of BPS agent coefficients in θtj; see Fig. 3.5. An interesting point to note is how
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FIGURE 3.5: US inflation rate forecasting 1990/Q1-2014/Q4: On-line posterior
means of BPS model coefficients sequentially computed at each of the t “ 1:100
quarters.

BPS successfully adapts its coefficients during the sub-prime mortgage crisis by

significantly down-weighting M3. As a dynamic model, BPS will not degenerate,

continually allowing for “surprises” in changes in relative forecast performance

across the agents.

Similarly, DeCo weights (see Fig. 3.6) heavily favor M3 from the training period

and the weights– while dynamic– end up being very static. It is clear that the ben-

efits of BPS is in its dynamic nature of its coefficients in stark contrast to DeCo. As

the jagged coefficients indicate, BPS is constantly updating and calibrating with-

out over-learning, partly due to discount learning (forgetting) and the latent bi-

ases/dependencies being effectively transferred to the coefficients. Though under-

standing what aspects of BPS (intercept, discounting, latent biases/dependencies,

etc...) contribute to the gains seen in this example is beyond the scope of this dis-

sertation, it is clear that they allow the coefficients to quickly adapt over time and

improve forecasts.
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FIGURE 3.6: US inflation rate forecasting 1990/Q1-2014/Q4: On-line means of
DeCo model weights sequentially computed at each of the t “ 1:100 quarters.

3.2.2 4-step ahead forecasting

Figs. 3.7-3.11 summarize sequential analysis for 4-step forecasting, using both the

direct extrapolation to 4-quarters ahead under the BPS model and the customized

BPSp4q model. Each BPS strategy performs consistently better than agents and

other strategies in point forecasting, while BPSp4q makes significant improvements

in terms of both point and distribution forecasts compared to direct BPS extrapo-

lation; see Figs. 3.7, 3.8, and 3.9. BPS performs relatively poorly in terms of LPDR

as– being inherently calibrated to 1-step model fit– it fails to adequately represent

the increased uncertainty associated with long term forecasts. Looking at the fore-

cast standard deviations in Fig. 3.10, it is clear that BPSp4q is able to improve by

adjusting to the increased forecast uncertainties. Then, even though forecast un-

certainties increase substantially, they are clearly more than balanced by improved

location forecasts as illustrated in Figs. 3.7 and 3.9. This again bears out the rec-

ommendation to directly synthesize forecasts on the horizon of interest rather than

direct projection.
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Fig. 3.11 shows on-line estimates of the BPSp4q coefficients θt as they are se-

quentially updated and adapt over time during the test period. There is a notable

reduction in adaptability over time relative to the 1-step BPS coefficients (Fig. 3.5);

this is expected as the agents’ forecasts are less reliable at longer horizons, so the

data-based information advising the changes in posteriors over time is limited. The

dynamic intercept term serves as a comparison base as it moves away from zero,

playing a more active role in BPSp4q than in the 1-step case. Additionally, the 4-step

ahead coefficient values (indicated here by just the on-line means) are quite differ-

ent from 1-step coefficients, reasonably reflecting the differing forecasting abilities

of the agents at differing horizons. BPSp4q is able to adapt to the 4-step ahead fore-

cast, unlike the 1-step BPS, and dominate in performance compared to all other

methods as a result.

FIGURE 3.7: US inflation rate forecasting 1990/Q1-2014/Q4: Mean squared 4-
step ahead forecast errors MSFE1:tp4q sequentially revised at each of the t “ 1:100
quarters.
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FIGURE 3.8: US inflation rate forecasting 1990/Q1-2014/Q4: 4-step ahead log
predictive density ratios LPDR1:tp4q sequentially revised at each of the t “ 1:100
quarters using direct projection from the 1-step ahead BPS model (baseline at 0
over time).

FIGURE 3.9: US inflation rate forecasting 1990/Q1-2014/Q4: 4-step ahead log
predictive density ratios, LPDR1:tp4q sequentially revised at each of the t “ 1:100
quarters using the 4-step ahead customized BPSp4qmodel (baseline at 0 over time).
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FIGURE 3.10: US inflation rate forecasting 1990/Q1-2014/Q4: 4-step ahead fore-
cast standard deviations sequentially computed at each of the t “ 1:100 quarters.

FIGURE 3.11: US inflation rate forecasting 1990/Q1-2014/Q4: On-line posterior
means of BPSp4q model coefficients sequentially computed at each of the t “ 1:100
quarters.
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3.3 Retrospective analysis

Based on the full MCMC analysis of all data in 1990/Q1-2014/Q4, we review as-

pects of retrospective posterior inference.

BPS Coefficients. Retrospective posteriors for BPS (1-step) and BPSp4q model

coefficients are summarized in Figs. 3.12 and 3.13, respectively, to compare with

on-line point summaries in Figs. 3.5 and 3.11 earlier discussed. We see the ex-

pected smoothing of estimated trajectories of coefficients. To the extent that the

role of the intercept terms can be regarded as reflecting (lack of) effectiveness of

the synthesized models, these figures confirm that the agents’ predictions are much

more questionable at 4-steps ahead than at 1-step ahead. Intercepts increase up

to and during the sub-prime mortgage crisis due to the increased inability for the

models to forecast well during this time.

FIGURE 3.12: US inflation rate forecasting 1990/Q1-2014/Q4: Retrospective
posterior trajectories of the BPS model coefficients based on data from the full
t “ 1:100 quarters. Posterior means (solid) and 95% credible intervals (shaded).
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FIGURE 3.13: US inflation rate forecasting 1990/Q1-2014/Q4: Retrospective pos-
terior trajectories of the BPSp4q model coefficients based on data from the full
t “ 1:100 quarters. Posterior means (solid) and 95% credible intervals (shaded).

Latent Agent States and Forecast Dependencies. BPS naturally allows for– and

adapts to– dependencies among agents as they evolve over time. In many cases,

models and data used by agents are typically unknown to the decision maker and

therefore posterior inference on dependencies among agents is of special interest;

even when agents are chosen statistical models– as in this example– the questions

of inter-dependence and potential redundancy in forecast value are hard and open

questions in all approaches to aggregation.

As noted earlier, the conceptual and theoretical basis of BPS allows direct in-

vestigation of agent dependencies, as the inherent latent agent states xtj– when

inferred based on the observed data– carry the relevant information. From the full

MCMC analysis to the end of the test data period, we have full posterior samples

for the states xt– in both the direct BPS and customized BPSp4q. For illustration,

we focus on the 1-step BPS analysis; Fig. 3.14 displays posterior trajectories for

the xtj, together with the inflation outcomes yt; Fig. 3.15 is similar, but vertically

47



www.manaraa.com

centers the display by plotting trajectories for the forecast deviations yt ´ xtj. The

patterns over time in each of these reflect the strong, positive dependencies among

agents that are to be expected given the nature of the agent models.

To explore dependencies, we simply investigate the posterior for x1:T . This is not

a standard form and is represented in terms of the MCMC-based posterior sample.

One simple set of summaries is based on just computing empirical R2 measures:

from the MCMC sample, compute the approximate posterior variance matrix of xt

at each t, and from that extract implied sets of conditionals variances of any xtj

given any subset of the other xti, i ‰ j. We do this for i “ 1:Jzj, defining the MC-

empirical R2 for agent j based on all other agents, i.e., measuring the redundancy

of agent j in the context of all J agents– the complete conditional dependencies.

We do this also using each single agent i ‰ j, defining paired MC-empirical R2

measures of how dependent agents i, j are– the bivariate dependencies. Fig. 3.16

and 3.17 displays trajectories over time for these two measures for each horizon.

FIGURE 3.14: US inflation rate forecasting 1990/Q1-2014/Q4: BPS model-based
posterior trajectories of the latent agent states xtj for j “ 1:4 over the t “ 1:100
quarters. Posterior means (solid) and 95% credible intervals (shaded) from the
MCMC analysis, with data yt ” pt (circles).
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FIGURE 3.15: US inflation rate forecasting 1990/Q1-2014/Q4: BPS model-based
posterior trajectories of the error in latent agents states yt´xtj for j “ 1:4 over the
t “ 1:100 quarters. Posterior means (solid) and 95% credible intervals (shaded)
from the MCMC analysis.

Overall, we see high complete conditional dependencies at both forecast hori-

zons, as expected due to the nature of the 4 models and their evaluation on the

same data. Dependencies are substantial and much higher for 1-step forecasts than

for 4-step ahead forecasts, reflecting decreasing concordance with increasing hori-

zon, and all decrease over the test period. The predictability of M2 based on the

others drops at a greater rate after about the start of 2002, in part due to poorer

and less reliable performance during the dot-com crisis. The paired measures are

all very low compared to the complete conditionals. Concordance of M2 and M3

decreases for 1-step but increases slightly for 4-step ahead forecasts, reflecting dy-

namics in relationships that differ with forecast horizon; from earlier discussion

of forecast accuracy, this can be explained by how, in 1-step ahead forecasts, M2

improves while M3 deteriorates during the sub-prime mortgage crisis. For 4-step

ahead forecasts (Fig. 3.17), forecast errors converge between the two, explaining

the increase in concordance as all models performed equally poorly.
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FIGURE 3.16: US inflation rate forecasting 1990/Q1-2014/Q4: BPS model-based
trajectories of 1-step ahead MC-empirical R2 (left) and paired MC-empirical R2

(right) in the posterior for the latent agent states xtj for j “ 1:4 over the t “ 1:100
quarters.

FIGURE 3.17: US inflation rate forecasting 1990/Q1-2014/Q4: BPSp4q model-
based trajectories of 4-step ahead MC-empirical R2 (left) and paired MC-empirical
R2 (right) in the posterior for the latent agent states xtj for j “ 1:4 over the
t “ 1:100 quarters.
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3.4 Summary

The US macroeconomic data study illustrates how effective and practical BPS is

under settings that are increasingly important and topical in macroeconomics and

econometrics. By dynamically synthesizing the forecasts, BPS improves forecast

performance and dominates other standard strategies, such as BMA and pooling,

over short and long horizons and for both point and distribution forecasts. Further

analysis shows evidence that BPS is also robust in its forecast abilities under eco-

nomic distress, which is critically important for practical applications. Additionally,

posterior inference of the full time series provides the decision maker with infor-

mation on how agents are related, and how that relationship dynamically evolves

through time; this has potential to inform BPS modeling for continued forecast

synthesis into the future.
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4

Multivariate BPS: Macroeconomic Time Series

4.1 US Macroeconomic Time Series

Many critical problems in decision making involve multiple series. For these prob-

lems, the cross-series dependence structure plays a crucial role in making informed

forecasts, inference, and decisions. In economic policy making, dependencies

among macroeconomic series provide fundamental insight into the state of econ-

omy, improve forecasts over multiple horizons, and measure/forecast the impact

of policy decisions made. Multivariate models, ranging from vector autoregres-

sive models (VAR) to dynamic stochastic generalized equilibrium models (DSGE),

have been developed and used in response to this reality. There is a vast litera-

ture in macroeconomics and econometrics, from the early works of Sims (1993),

Stock and Watson (1996), Sims and Zha (1998) to some recent advances in dy-

namic Bayesian models in Cogley and Sargent (2005), Primiceri (2005), Benati

and Surico (2008), Koop et al. (2009), Nakajima and West (2013a), Koop et al.

(2010), and others that address this exact problem for the purpose of making in-

formed economic policy decisions.
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In terms of model comparison, calibration, and combination, the literature is

dominated by model comparison and variable selection (e.g. Chan et al., 2012;

Korobilis, 2013; Nakajima and West, 2013a), while little attention and develop-

ment has been given to model combination. The existing literature on multivariate

model combination (Andersson and Karlsson, 2008; Amendola and Storti, 2015)

is limited to direct extensions of univariate methods, where models are combined

linearly using one metric for the overall performance of a model. This is limiting in

multiple ways, though most critically it lacks the flexibility necessary for multivari-

ate forecasting. For example, some agents (models or individuals) might be good

at forecasting one series but poor in another, or do not forecast some series at all.

The strategies in the literature are limited in assessing the average performance

across series when the full set of multivariate forecasts exist.

Multivariate BPS provides a flexible and coherent structure for multivariate

forecasts to be synthesized. For our application, we forecast a topical 6-series

macroeconomic data set using models echoing the decision process of economic

policy makers.

4.1.1 Data

We analyze monthly US macroeconomic data, focusing on forecasting 6 macroe-

conomic time series with 1-, 6-, 12-, and 24-month ahead interests. The study

involves the following monthly macro series: annual inflation rate ppq, wage pwq,

unemployment rate puq, consumption pcq, investment piq, and short-term nominal

interest rate prq in the US economy from 1986/1 to 2015/12. The inflation rate is

the consumer price index for all urban consumers: all items less food and energy,

not seasonally adjusted; wage is the average hourly earnings of production and

nonsupervisory employees: total private, not seasonally adjusted; the unemploy-

ment rate is the civilian unemployment rate, seasonally adjusted; consumption is
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the personal consumption expenditures, seasonally adjusted annual rate; invest-

ment is the ISM manufacturing: new orders index; and the interest rate is the

effective federal funds rate, not seasonally adjusted. Fig. 4.1 shows the data for

the 6 series over the time span considered. We focus on forecasting the 6, with

an emphasis on inflation, using past values of the 6 indices as candidate predictors

underlying a set of 5 time series models– the J “ 5 agents– to be evaluated, cal-

ibrated, and synthesized. During the period of analysis, the sub-prime mortgage

crisis and great recession of the late 2000s warrant special attention. As this period

exhibited such a sharp shock to the US economy, it tests the predictive ability of

any model and strategy under great stress. For a combination strategy to be effec-

tive and useful, its predictive performance must be robust under these conditions.

Additionally, due to the structural changes in the overall economy, there is also

interest in inferring the dependencies between series before and after the crisis;

something that is unavailable with a univariate series.

4.1.2 Agents and BPS specifications

For the J “ 5 agents we use time varying parameter vector autoregressive (TVP-

VAR) models that cover multiple dynamic structures utilized in the literature (Cog-

ley and Sargent, 2005; Primiceri, 2005; Koop et al., 2009; Nakajima and West,

2013a) and in practice. Labeling them M*, the agent models are: M1- VARp1q; M2-

VARp12q; M3- VARp3q; M4- VARp1:3:9q; M5- VARp1:6:12q. The numbers in paren-

theses are the lags and the number between colons represent intervals (e.g. 1:3:9

uses lags of 1, 3, 6, and 9). Each M* is a standard TVP-VAR model (or exchangeable

time series) with the residual volatility following a matrix-beta/Wishart random

walk so that model fitting and generation of forecasts is routine. Though more

state-of-the-art models (for example, Bayesian TVP-VARs with stochastic volatility

seen in Nakajima and West (2013a)) are available, the benefit and appeal of fore-
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FIGURE 4.1: US macroeconomic data 2001/1-2015/12: US macroeconomic time
series (indices ˆ100 for % basis): annual inflation rate ppq, wage pwq, unemploy-
ment rate puq, consumption pcq, investment piq, and short-term nominal interest
rate prq.
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cast synthesis is making improvements over a set of relatively simple model and

not resorting to complex models that are hard to estimate/calibrate.

Prior specifications for the TVP-VAR state vector and discount volatility model

in each is based on Θ0|V 0 „ NpM 0,V 0q and V 0 „ W
´1
p12, 12Iq, where M 0 “

r0; 0.99Is, using the usual pΘ,V q notation (Prado and West, 2010, Chap 10). Each

agent model uses standard discount factor pβq specification for state evolution vari-

ances and discount factor pδq for residual volatility; we use pβ, δq “ p0.99, 0.98q in

each of these agent models. The forecast densities ht´k,jpxtjq are then those of

predictive T distributions.

In the dynamic BPS models for forecast horizons k “ 1, 6, 12, 24, we take initial

priors as θ0 „ Npm,Cq with m “ p0,11{pq1 and C “ diagp0.001,1q and V 0 „

W´1
p7, 0.01Iq. BPS for 1-step ahead forecasting is based on pβ, δq “ p0.99, 0.95q,

as with BPSpkq for k “ 6, 12, 24-month ahead forecasting, as discussed in Sec-

tion 2.2.3.

We have explored analyses across ranges of priors and discount factors, and

chosen these values as they lead to good agent-specific and BPS forecasting ac-

curacy; conclusions with respect to BPS do not change materially with different

values close to those chosen for the summary examples.

4.1.3 Data analysis and forecasting

The 5 agent models are analyzed and synthesized as follows. First, the agent mod-

els are analyzed in parallel over 1986/1-1993/6 as a training period to calibrate

the agent VAR models. This continues over 1993/7-2001/12 while at each month

t, during this period, the MCMC-based BPS analysis is run in parallel using data

from 1993/7 up to time t in an “expanding window” fashion, adding data as we

move forward in time. We do this for the traditional 1-step focused BPS model,

and– separately and in parallel– for the k “ 6, 12, 24-step ahead focused BPSpkq
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model, as discussed in Section 2.2.3. This continues over the third period to the

end of the series, 2001/1-2015/12, generating forecasts (for the agents and BPS)

for each t until the end of the testing period. This testing period spans over a

decade and a half and includes 180 data points, providing a good measure of how

the agents and BPS perform under different economic situations; most notably be-

fore, during, and after the sub-prime mortgage crisis. Out-of-sample forecasting

is thus conducted and evaluated in a way that mirrors the realities facing decision

and policy makers.

4.1.4 Forecast and accuracy and comparisons

As in Section 3.1.3, we compare both point and density forecasts to give a broader

understanding of the predictive abilities of the agents and BPS. For the point fore-

casts, we compute and compare mean squared forecast errors (MSFE) over the

forecast horizons of interest and for each series. For density forecasts with BPS, we

evaluate log predictive density ratios (LPDR); at horizon k and across time indices

t for the joint set of series, this is

LPDR1:tpkq “
ÿ

i“1:t

logtpjpyt`k|Y 1:tq{pBPSpyt`k|Y 1:tqu

where pjpyt`k|Y 1:tq is the predictive density under each agent indexed by j, base-

lined against the corresponding BPS forecasts at this horizon. LPDR provides a

direct statistical assessment of the distributional accuracy of a forecast relative to,

in this case, BPS for multiple horizons, extending the 1-step focused Bayes’ factors.

They compare the location and dispersion of the forecasts, giving an assessment of

risk, elaborating on MSFE measure, and have been recently used in similar studies

(Nakajima and West, 2013a; Aastveit et al., 2016).
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4.2 Dynamic BPS and forecasting

4.2.1 1-step ahead forecasting

Table 4.1 summarizes the predictive measures compared for the 1-step ahead fore-

casts. Looking at point forecasts, BPS exhibits improvements over 4 out of the 6

series to the agent models; the 4 being inflation, wage, consumption, and invest-

ment. Even for the 2 series for which BPS does not show improvement over the

models, the difference between the best model is within 1%. On the series BPS

makes an improvement, the gains are at least 2%. It is also notable that the best

model differs for each series. VARp1:3:9q is best for inflation while it is the worst

for wage, for example. Under traditional model combination strategies, where a

model is assessed on overall performance, it would sacrifice the accuracy for one

series for another. BPS, due to its flexible synthesis function, is able to synthesize

forecasts on each series, while retaining the inter-series dependencies. This leads

to BPS improving on multiple series without trading off one series over another.

As with the univariate example in Chapter 3, BPS substantially improves char-

acterization of forecast uncertainties as well as adaptation in forecast locations, re-

flected in the LPDR measures. Note that the best model, in terms of LPDR, is only

best for wage in terms of MSFE and performs average for the other series. This

indicates how LPDR measures for multiple series favor overall performance over

models that are good for some but bad for others. Model combination schemes

that are dependent on likelihood measures (BMA, for example), therefore, would

have heavily favored the average performing model. BPS dynamically synthesizes

each series, while improving uncertainty assessment (per series and dependence

between series), to improve in terms of overall distribution forecasts as well as

point forecasts. This feature of BPS is critical, as D typically has priorities in the

series being forecasted.
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Table 4.1: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead fore-
cast evaluations for monthly US macroeconomic series over the 15 years 2001/1-
2015/12, comparing mean squared forecast errors and log predictive density ratios
for this T “ 180 months. The column % denotes improvements over BPS. Note:
LPDR1:T is relative to BPS.

MSFE1:T

1-step Infl % Wage % Unemp %
VARp1q 0.1187 -4.4572 0.3800 -16.7632 0.1435 0.4466
VARp12q 0.1265 -11.3291 0.3331 -2.3560 0.1515 -5.1460
VARp3q 0.1214 -6.8500 0.3324 -2.1185 0.1480 -2.7157
VARp1:3:9q 0.1162 -2.2800 0.3461 -6.3567 0.1491 -3.4446
VARp1:6:12q 0.1170 -2.9578 0.3807 -16.9740 0.1467 -1.7517
BPS 0.1136 - 0.3255 - 0.1441 -

MSFE1:T

1-step Cons % Invest % Interest %
VARp1q 0.6251 -2.3135 3.6357 -2.0875 0.1657 -14.8758
VARp12q 0.6853 -12.1708 3.9188 -10.0371 0.1568 -8.6896
VARp3q 0.6311 -3.2879 3.6498 -2.4834 0.1452 -0.6731
VARp1:3:9q 0.6363 -4.1505 3.7272 -4.6560 0.1430 0.8887
VARp1:6:12q 0.6237 -2.0753 3.6647 -2.9023 0.1509 -4.6144
BPS 0.6110 - 3.5614 - 0.1442 -

1-step LPDR1:T

VARp1q -86.1728
VARp12q -105.3492
VARp3q -43.8210
VARp1:3:9q -46.4023
VARp1:6:12q -63.0610
BPS -

We further our analysis by reviewing summary graphs showing aspects of analy-

ses evolving over time during the testing period, a period that includes challenging

economic times that impede good predictive performance. Figs. 4.2-4.15 summa-

rize sequential analysis for 1-step forecasting.

Fig. 4.2 shows the 1-step ahead measures MSFE1:tp1q for each time t for in-

flation. The other series are omitted for the sake of brevity, but the patterns in

inflation are consistent. Additionally, forecasting inflation is one of the most im-
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FIGURE 4.2: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-
step ahead forecast errors MSFE1:tp1q sequentially revised at each of the t “ 1:180
months for inflation.

portant tasks for an economic policy maker, and therefore focusing on inflation is

appropriate for this example. While BPS does not outperform the other models

over the whole testing period, we see that it is on par with the best models con-

sidered. BPS ends up improving on the other models based on its performance

during and after the sub-prime mortgage crisis, demonstrating how BPS dynami-

cally adapts over time to produce robust forecasts over crisis periods and changing

regimes.

Fig. 4.3 confirms that BPS performs uniformly better than the other models

based on LPDR measures that measure relative distributional form and dispersion

of forecast densities as well as location. Compared to the quarterly data in Chap-

ter 3, the sub-prime mortgage crisis has less of a clear impact on LPDR, though

the effects can be seen impacting the measure during and after the shock. The

gradual decline in LPDR and a more drastic decline after the crisis is indicative of

how BPS dynamically adapts its location and uncertainty to improve its distribution

forecasts.
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FIGURE 4.3: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead log
predictive density ratios LPDR1:tp1q sequentially revised at each of the t “ 1:180
months. The baseline at 0 over all t corresponds to the standard BPS model.

One of the crucial aspects of the BPS synthesis function used is that it can

adapt its coefficients specific to the series. Figs. 4.4-4.9 are the on-line posterior

means of BPS model coefficients for 1-step ahead forecasts for each series. We first

note how the coefficients for each series are drastically different from each other.

For example, the model with the highest coefficient is different from each series,

reflecting how certain models are better at forecasting different series.

Focusing on inflation (Fig. 4.4), the coefficients clearly exhibit a structural

change after the sub-prime mortgage crisis. VARp1q and VARp3q, which are rela-

tively simple models with short lags, have the highest coefficients up until the cri-

sis, but quickly drop off, replaced by VARp1:3:9q and VARp1:6:12q, which are more

complex models with longer lags. This can be viewed as a structural change where

simpler dynamics are being replaced by longer, more complex, dynamics after the

crisis.

Wage (Fig. 4.5), on the other hand, stays relatively stable over time. VARp3q, a

quarter worth of lags, has the highest coefficient and stays the highest throughout.
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FIGURE 4.4: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for inflation.

In comparison to inflation, VARp1q, the simplest model, stays close to zero, while

VARp12q, the most complex model, is in the negative.

Fig. 4.6, coefficients for unemployment, exhibits an increase in VARp1q and

decrease in VARp1:3:9q after the sub-prime mortgage crisis. Due to unemployment

being heavily impacted by the crisis, this characteristic is understandable. Long

term unemployment trends become irrelevant in light of the recent shock to the

economy, and the coefficients reflect that shift.

Coefficients for consumption and investment (Figs. 4.7-4.8) are perplexing, as

there is almost no signal to be read off the coefficients. There are multiple reasons

why this might occur. The biggest reason is the high variation in the two series.

The forecasts from these models, therefore, have large forecast uncertainties that

in turn make the BPS coefficients unstable.

Finally, interest rate (Fig. 4.9) coefficients favor more complex models with

longer lags. Interestingly, we see a gradual decrease in VARp1q up until the sub-

prime mortgage crisis, at which point it stays level. Long term dynamics, we can
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FIGURE 4.5: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for wage.

infer, were taking over short term dynamics leading up to the crisis, bringing up

interesting questions about lending and credit characteristics pre-crisis. We also

note that the introduction of zero interest rates after the crisis does not seem to

effect the coefficients at all.

Looking at misspecification, i.e., the sum of on-line posterior means of the sum

of BPS model coefficients, most of the series are relatively stable around 1 (fully

specified), with the exception being inflation and investment. The commonalities

between the two is that both have a decreasing trend, indicating greater misspec-

ification over the time period considered. This is expected, as the models used

became increasingly unsuitable to the shifting economy over time.

Figs. 4.11-4.15 exhibit selected aspects of the trend in uncertainty and depen-

dence between series over time. The forecast standard deviation (the diagonal

elements of the forecast covariance matrix) displays how the uncertainty mea-

sures change over time; seen in Fig. 4.11. Complex models for multiple series

that require estimation methods that are also complex, often produce large fore-
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FIGURE 4.6: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for unemployment.

FIGURE 4.7: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for consumption.
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FIGURE 4.8: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for investment.

FIGURE 4.9: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for interest rate.
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FIGURE 4.10: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior means of the sum of BPS model coefficients (misspecification) se-
quentially computed at each of the t “ 1:180 months.

cast deviations coming from the model, data, estimation method, or all of the

above. Large VAR models are popular in practice, due to its modeling flexibil-

ity and interpretability, but naturally lead to inflated uncertainty measures due to

its complex nature. BPS, on the other hand, has smaller uncertainty forecasts by

synthesizing the forecasts and decreasing the forecast uncertainty relative to the

agents. Though underestimating real risk is as dangerous as overestimating it, the

LPDR results indicate that the BPS uncertainty estimates are better than the agent

forecast uncertainties.

Finally, we move our attention to the posterior BPS forecast dependencies among

agent forecasts over time. The forecast dependence among agent forecasts is de-

fined here as the on-line posterior of the covariance of θt in eqn. (2.11b). As

mentioned in Chapter 2, the posterior dependencies between agents are effectively

transferred onto the dynamic coefficients, thus inspecting the dependence struc-

ture of θt is in effect exploring the latent dependencies among agents. Rather than

tracking the dependence over time, we look at the dependence at four specific time
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FIGURE 4.11: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead fore-
cast standard deviations sequentially computed at each of the t “ 1:180 months.

points that represent four different regimes in the testing period; pre-sub-prime

mortgage crisis (2003/10), immediately before the crisis (2007/7), immediately

after the crisis (2009/3), and post-crisis (2014/6). We also use the correlation

instead of the covariance in order to standardize the matrix. The correlation is

arranged in order of series and then agents within that series.

Figs. 4.12-4.15 exhibit this dependence among different time points. At the

beginning of the testing period (Fig. 4.12), where the series are relatively stable,

the dependence is almost zero across series, with some negative correlation within

series. The negative correlation within series is expected. If a model coefficient

increases, the other model coefficients decrease so the sum of coefficients stays

stable from t to t` 1. Immediately before the crisis (Fig. 4.13), a slight change can

be noticed for the change in dependence across series, namely wage, consumption,

and investment, and some within, e.g., consumption, with positive correlations.

The difference from Fig. 4.12 is notable. The crisis has yet to set in and the change

in dependence is already clear, with dependence across series becoming prevalent.
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Immediately after the crisis (Fig. 4.14), more non-zero dependence appears

across all agent forecasts, especially between unemployment, consumption, invest-

ment, and interest rate. Under considerable shock, the dependencies that started

to appear in Fig. 4.13 become more rampant. Larger dependencies appear be-

tween consumption and investment, and the positive dependence in consumption

becomes stronger. Post crisis (Fig. 4.15), we see a new dependence structure ap-

pearing, with greater dependence among wage, consumption, and investment, but

weaker dependence otherwise compare to Fig. 4.14. Additionally, the positive cor-

relation within consumption also has weakened compared to right after the crisis.

Following the trend of dependence among agents and across series over time

provides important insight into how the economy changes over shocks and differ-

ent regimes. Figs. 4.12 and 4.15 are both snapshots of relatively stable periods,

yet the characteristics exhibited through the dependence are starkly different. This

FIGURE 4.12: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior correlation of BPS model coefficients for 2003/10.
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FIGURE 4.13: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior correlation of BPS model coefficients for 2007/07.

FIGURE 4.14: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior correlation of BPS model coefficients for 2009/03.
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FIGURE 4.15: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead on-
line posterior correlation of BPS model coefficients for 2014/06.

difference in economic structure is not unexpected, though graphically visualizing

the difference through the lens of agents provides new insight and perception into

the overall change in economy.

4.2.2 k-step ahead forecasting

Long term forecasts in economic policy making is equally– if not more– important

to 1-step ahead forecasting. For this study, we forecast 6- (half a year), 12- (year),

and 24- (two years) step ahead to demonstrate the effectiveness of BPS over the

set of agents.

Tables 4.2-4.4 summarizes the predictive measures compared for the three fore-

cast horizons. For point forecasts, BPSpkq outperforms all other models for all series

except for coming in second for wage. This improvement holds for all k-step ahead

forecasts considered and the improvements of BPSpkq only increase with k. The

improvement comes from BPSpkq directly synthesizing the k-step ahead forecasts
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from the agents, calibrating, adapting, and learning the latent dependencies and

biases over the k-step ahead quantity of interest. For 24-step ahead forecasts of

inflation, which is one of the most important series for economic policy making,

BPSpkq greatly improves on the agent models, improving over 130% on the best

agent model. As with 1-step ahead forecasting, it is also notable that agent model

performances greatly vary across series. Traditional model combination schemes,

again, will fail to improve over all series by sacrificing one series over another,

unlike BPSpkq

BPSpkq also significantly improves on the uncertainty forecasts, as evident in the

comparison of LPDR. Creating long term uncertainty forecasts for multiple time se-

ries is a very difficult problem due to the nature of these models being designed

for 1-step ahead forecasts and failing to propagate forward accurately. BPSpkq syn-

thesizes the k-step ahead forecasts directly, adjusting and calibrating uncertainty

according to the actual quantity of interest. Thus, no matter how the agent un-

certainty forecasts are over- or under-estimating, BPSpkq can re-adjust accordingly

by learning how the agents over- or under-estimate. The consistency of the LPDR

improvements over multiple k-steps demonstrate this key feature of BPSpkq.

As with the sequential MSFE results for 1-step ahead forecasts, we focus solely

on MSFE results over t for inflation. The characteristics of the results for inflation

are similar to those of the other series and are omitted for the sake of brevity.

Figs. 4.16-4.18 exhibit MSFE comparisons for inflation over the testing period for

k “ 6, 12, 24-step ahead forecasts. Although the scale is different for each k, there

are notable common characteristics that define BPSpkq. For example, agent models

experience several large shocks in precision over the testing period, in particular

the sub-prime mortgage crisis in the late 2000s. These shocks effect the precision

of the agent models greatly, especially for 24-step ahead forecasts. In comparison,

BPSpkq stays relatively robust throughout multiple shocks and structural breaks.
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FIGURE 4.16: US macroeconomic forecasting 2001/1-2015/12: Mean squared 6-
step ahead forecast errors MSFE1:tp6q sequentially revised at each of the t “ 1:180
months for inflation.

FIGURE 4.17: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-
step ahead forecast errors MSFE1:tp12q sequentially revised at each of the t “ 1:180
months for inflation.

72



www.manaraa.com

Table 4.2: US macroeconomic forecasting 2001/1-2015/12: 6-step ahead fore-
cast evaluations for monthly US macroeconomic series over the 15 years 2001/1-
2015/12, comparing mean squared forecast errors and log predictive density ratios
for this T “ 180 months. The column % denotes improvements over BPSp6q. Note:
LPDR1:T is relative to BPSp6q.

MSFE1:T

6-step Infl % Wage % Unemp %
VARp1q 0.3946 -32.1399 0.5112 -3.5642 0.4451 -0.5160
VARp12q 0.4094 -37.1158 0.5767 -16.8366 0.5466 -23.4443
VARp3q 0.4046 -35.4893 0.4908 0.5652 0.4522 -2.1229
VARp1:3:9q 0.3814 -27.7328 0.5996 -21.4591 0.5316 -20.0687
VARp1:6:12q 0.4239 -41.9655 0.6143 -24.4435 0.4895 -10.5437
BPSp6q 0.2986 - 0.4936 - 0.4428 -

MSFE1:T

6-step Cons % Invest % Interest %
VARp1q 1.3652 -2.0847 8.7751 -22.2396 1.0702 -10.8799
VARp12q 2.1554 -61.1649 11.0582 -54.0433 1.0866 -12.5850
VARp3q 1.3499 -0.9354 8.5996 -19.7944 1.0356 -7.2979
VARp1:3:9q 1.7679 -32.1961 10.1307 -41.1240 1.0063 -4.2685
VARp1:6:12q 1.8082 -35.2079 10.5685 -47.2220 1.1712 -21.3478
BPSp6q 1.3374 - 7.1786 - 0.9651 -

6-step LPDR1:T

VARp1q -171.0656
VARp12q -621.8982
VARp3q -487.3850
VARp1:3:9q -459.5934
VARp1:6:12q -413.7586
BPSp6q -

Looking at LPDR evolutions over time (Figs. 4.19-4.21), BPSpkq improves over

the agent models over all of the time period considered, except for slight increases

in VARp1q, post crisis. The greatest gains for BPSpkq are made during the sub-prime

mortgage crisis, as seen in the drastic drop after 2009. BPSpkq is able to adapt to

maintain improved forecasting performance both in terms of location and uncer-

tainty assessment, a key positive feature for decision makers tasked with forecast-

ing risk and quantiles for long horizons under possible shocks and regime change.
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FIGURE 4.18: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-
step ahead forecast errors MSFE1:tp24q sequentially revised at each of the t “ 1:180
months for inflation.

FIGURE 4.19: US macroeconomic forecasting 2001/1-2015/12: 6-step ahead log
predictive density ratios LPDR1:tp6q sequentially revised at each of the t “ 1:180
months. The baseline at 0 over all t corresponds to the standard BPS model.
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FIGURE 4.20: US macroeconomic forecasting 2001/1-2015/12: 12-step ahead log
predictive density ratios LPDR1:tp12q sequentially revised at each of the t “ 1:180
months. The baseline at 0 over all t corresponds to the standard BPS model.

FIGURE 4.21: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead log
predictive density ratios LPDR1:tp24q sequentially revised at each of the t “ 1:180
months. The baseline at 0 over all t corresponds to the standard BPS model.
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Table 4.3: US macroeconomic forecasting 2001/1-2015/12: 12-step ahead fore-
cast evaluations for monthly US macroeconomic series over the 15 years 2001/1-
2015/12, comparing mean squared forecast errors and log predictive density ratios
for this T “ 180 months. The column % denotes improvements over BPSp12q. Note:
LPDR1:T is relative to BPSp12q.

MSFE1:T

12-step Infl % Wage % Unemp %
VARp1q 0.7355 -50.0615 0.6675 1.5569 1.0944 -6.4387
VARp12q 0.6582 -34.2938 0.8761 -29.2033 1.2724 -23.7507
VARp3q 0.7645 -55.9703 0.7222 -6.5031 1.0787 -4.9131
VARp1:3:9q 0.6721 -37.1169 1.0602 -56.3535 1.2837 -24.8491
VARp1:6:12q 0.7366 -50.2885 0.9536 -40.6275 1.1722 -13.9975
BPSp12q 0.4901 - 0.6781 - 1.0282 -

MSFE1:T

12-step Cons % Invest % Interest %
VARp1q 2.6814 -21.8409 11.1198 -36.0292 2.3553 -25.4645
VARp12q 4.2298 -92.1963 11.1509 -36.4094 2.4233 -29.0847
VARp3q 2.6434 -20.1114 10.2069 -24.8615 2.2074 -17.5840
VARp1:3:9q 3.2074 -45.7432 12.9534 -58.4592 2.1449 -14.2556
VARp1:6:12q 3.1846 -44.7034 12.7985 -56.5647 2.7716 -47.6382
BPSp12q 2.2007 - 8.1746 - 1.8773 -

12-step LPDR1:T

VARp1q -186.0814
VARp12q -574.2636
VARp3q -419.9158
VARp1:3:9q -569.5800
VARp1:6:12q -552.4816
BPSp12q -

Figs. 4.22-4.27 exhibit the on-line posterior means of BPS model coefficients

for the 24-step ahead forecasts. The coefficients for 6- and 12-step ahead forecasts

are omitted due redundancy. Overall, the BPSpkq coefficients are relatively stable

compared to the 1-step ahead results, likely due to the lack of signal from the agent

forecasts. The agent forecasts’ ability for 24-steps are considerably worse than the

1-step ahead counterpart, leading to less useful information to be synthesized by

BPSpkq. The lack of signal from all of the agent models leads to less movement in
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the coefficients, and in turn, an increase in adaptability in the intercept.

The model misspecification, measured by the sum of on-line posterior means

of BPS model coefficients (Fig. 4.28), is significantly larger than that of the 1-step

ahead forecasts (Fig. 4.10), confirming how agent model misspecification increases

over k. The exception to this is unemployment and consumption, which were

stable for 1-step ahead forecasts as well (Fig. 4.10). This persistence is puzzling, as

neither series can be specifically characterized as different (e.g. less volatile) from

Table 4.4: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead fore-
cast evaluations for monthly US macroeconomic series over the 15 years 2001/1-
2015/12, comparing mean squared forecast errors and log predictive density ratios
for this T “ 180 months. The column % denotes improvements over BPSp24q. Note:
LPDR1:T is relative to BPSp24q.

MSFE1:T

24-step Infl % Wage % Unemp %
VARp1q 1.4100 -172.1416 1.0076 5.8680 2.7310 -19.2747
VARp12q 1.1965 -130.9199 1.3878 -29.6519 2.8236 -23.3150
VARp3q 1.3181 -154.3944 1.1666 -8.9925 2.3746 -3.7070
VARp1:3:9q 1.5801 -204.9591 2.1644 -102.2126 3.2050 -39.9739
VARp1:6:12q 1.5385 -196.9375 2.2139 -106.8317 2.8777 -25.6798
BPSp24q 0.5181 - 1.0704 - 2.2897 -

MSFE1:T

24-step Cons % Invest % Interest %
VARp1q 4.9316 -38.7673 12.3935 -45.6739 5.6585 -71.3629
VARp12q 6.5373 -83.9519 12.6490 -48.6776 5.0113 -51.7629
VARp3q 4.1476 -16.7072 9.1875 -7.9903 4.6347 -40.3577
VARp1:3:9q 6.3717 -79.2916 25.4858 -199.5617 5.0248 -52.1721
VARp1:6:12q 5.9665 -67.8905 26.3992 -210.2973 7.8968 -139.1487
BPSp24q 3.5538 - 8.5077 - 3.3021 -

24-step LPDR1:T

VARp1q -329.6262
VARp12q -661.7998
VARp3q -464.2547
VARp1:3:9q -905.6553
VARp1:6:12q -876.0228
BPSp24q -
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FIGURE 4.22: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for inflation.

FIGURE 4.23: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for wage.
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FIGURE 4.24: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for unemployment.

FIGURE 4.25: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for consumption.
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FIGURE 4.26: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for investment.

FIGURE 4.27: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead on-
line posterior means of BPS model coefficients sequentially computed at each of
the t “ 1:180 months for interest rate.
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FIGURE 4.28: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead on-
line posterior means of the sum of BPS model coefficients (misspecification) se-
quentially computed at each of the t “ 1:180 months.

the other series. Additionally, the level of misspecification does not seem to effect

the improvements of BPSpkq. Further investigation into the connection of BPSpkq

misspecification and improvements is warranted.

4.3 Summary

Multivariate forecasting is an increasingly important topic in many fields where

decisions concerning uncertainty and dependence between multiple series are as

crucial as individual forecast accuracy. The univariate BPS framework is extended

to the multivariate setting to synthesize forecasts from multiple agents. A top-

ical multiple US macroeconomic data study demonstrates how multivariate BPS

can be effective and practical for macroeconomic policy decisions. Multivariate

BPS dynamically synthesizes forecasts to improve forecasts of individual series and

cross-series dependence, dominating the agent forecasts over multiple horizons for

both point and distribution forecasts. An analysis over the testing period illustrates

the robustness of the forecast accuracies of BPS under economic distress, which
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is critically important for practical applications. Further analysis into the depen-

dence structure of the agents across and within series highlights key insights into

the dynamic nature of dependence under different economic situations, providing

the decision maker with crucial information into the state of the economy.
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5

BPS Applications in Finance

5.1 Equity return predictability

There is a long literature on attempts to predict stock market returns in finance and

economics (e.g. Cremers, 2002; Avramov, 2002; Ang and Bekaert, 2007; Lettau

and Van Nieuwerburgh, 2008; Cochrane, 2008). However, it is near consensus

that no one predictor or set of predictors can outperform simple historical average

of returns consistently over time. In their seminal paper, Welch and Goyal (2008)

conduct an exhaustive search of predictors to find that predictors considered to

be statistically significant in the literature to be unstable in terms of out-of-sample

forecasts.

There are several limitations to methods in the literature. First, dynamics are

often not considered, as the models in the literature are almost solely static linear

regressions. We can expect certain predictors to be “in favor” at certain times, but

fall “out of favor” at others. This is particularly true under shocks or structural

changes seen in the equity and economic markets in the last couple of decades.

Second, research on return predictability often focus on market returns and not
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on sector indices or individual returns. Predictors having stronger signals for pre-

dictability at a finer level (sector, individual, etc.) might be washed out by ag-

gregation. Third, incorporating information is limited to linear combinations of

predictors. Under the framework used in the literature, the only way to add infor-

mation from other sources (e.g. sector information) is by adding predictors to the

model. This is limiting in the sense that we quickly run into problems of dimension-

ality and overfitting. If only a few predictors are expected to be significant at any

given time or period of time, most of the information is insignificant or detrimental

in terms of out-of-sample forecasting due to overfitting and additional noise.

As an application of BPS to financial data and problems of return predictability,

this dissertation considers two distinct problems: model synthesis to improve sec-

tor return predictability, and synthesizing projected sector information to improve

market return predictability.

The first application approaches the problem of return predictability for sec-

tor index returns, pulling information from sector predictors and market predic-

tors. Considering the return predictability of sector index returns, the question is

whether predictability comes from sector specific information or is driven by the

market as a whole. Compiling predictors for each sector and for the aggregate mar-

ket, we can build agents that represent different views on drivers of predictability:

sector, market, or both. Synthesizing these agents produces a deeper understand-

ing of the predictability of each sector, as well as improving forecast accuracy and

economic gains.

The second application approaches the problem of market return predictability

utilizing projected sector information. For this the idea of information projection is

utilized. Consider an agent analysis framework where each agent represents a sec-

tor using specific sector information to produce forecast distributions in regard to

market returns. For example, each agent can be a linear regression model (a linear
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projection of covariates onto the response), with market returns as a response vari-

able and sector specific predictors as covariates, producing a predictive distribution

for market returns. This forecast distribution can then be considered as sector spe-

cific information filtered in terms of market returns, as they are projections. These

agent forecasts (or filtered information) are then synthesized using BPS to learn

the dependencies across sectors and biases for each sectors. Additionally, the la-

tent dependencies uncovered by BPS can be considered as a new way of looking at

inter-sector dependency, as this dependency is conditional on the market.

5.1.1 Data

We analyze two separate sets of US equity returns data for the two studies. One

is the monthly sector returns for each of the 12 sectors on the New York Stock Ex-

change (Fig. 5.1.), and the second is the monthly market (S&P 500 index) returns

(Fig. 5.2.), both from 1985/1-2015/12, a data set of interest in the finance liter-

ature (Welch and Goyal, 2008). The 12 sectors are; NoDur: non-durable goods,

Durbl: durable goods, Manuf: manufacturing, Enrgy: energy, Chems: chemicals,

BusEq: business equipment, Telcm: telecommunications, Utils: utilities, Shops:

shops, Hlth: Health, Money: money, and Other: other stocks not included in the

above 11. During the period of analysis, the sub-prime mortgage crisis and great

recession of the late 2000s warrant special attention. Because this period exhibited

such a sharp shock to the US economy, and more so to the equity market, it tests

the robustness of the predictive ability of any model and strategy.

Each sector and market index is accompanied by several predictors used by

Welch and Goyal (2008), including, Volatility: the square root of the sum of daily

squared (de-meaned) returns on the value-weighted industry portfolio, ldp: the

difference between the log of dividends and the log of prices, ldy: the difference

between the log of dividends and the log of lagged prices, bmr: the ratio of book
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FIGURE 5.1: US sector index forecasting 2000/7-2015/12: US sector index returns
(returns ˆ100 for % basis).

FIGURE 5.2: US market index forecasting 2000/7-2015/12: US market index re-
turns (returns ˆ100 for % basis).
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value to market value for the Dow Jones Industrial Average computed on a quar-

terly basis and interpolated through a cubic spline to get monthly estimates, and

ntis: the ratio of 12-month moving sums of net issues divided by the total end-

of-year market capitalization. These predictors are considered in the literature to

improve the predictability of returns (Welch and Goyal, 2008) and are used to

build the agent forecasts used in the BPS analysis.

5.1.2 Agents and BPS specifications

Sector index return predictability

For the analysis for sector index returns, we have J “ 4 agents. Labeling them

M*, the agent models are: M1- historical average; M2- sector specific predictors;

M3- aggregate market predictors; M4- sector specific and aggregate market pre-

dictors. M1 has a predictive distribution using the historical mean and variance

from 1 : t. The other three use the predictors above in a linear regression model,

estimated using ordinary least squares (OLS), with an expanding window (sequen-

tially adding data from t “ 1). This set of models is common in the literature, as

the biggest challenge in return predictability is improving on the historical average

(M1). M2-M4 represent the views that predictability is driven from sector specific

predictors, aggregate market predictors, or a combination of both.

Market index return predictability

For the analysis for market index returns, we have J “ 12 agents. Each M* is

a model that forecasts the market index returns using sector specific predictors

for each sector *, generating forecasts using a linear regression model with an

expanding window (sequentially adding data from t “ 1).

The idea here is that each M* is a projection of the sector information onto the

quantity of interest: market index returns. By regressing the sector specific predic-
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tors onto the market index returns, the agents are essentially filtering the sector

information as it pertains to the market index returns. The forecasts coming from

each agent, thus, can be seen as filtered/projected sector information in regard to

the market returns.

For both studies, the dynamic BPS models take initial priors as θ0 „ Npm, 0.01Iq

with m “ p0,11{pq1 and 1{v0 „ Gp5, 100q. The discount factor for BPS is based on

pβ, δq “ p0.95, 0.99q.

5.1.3 Data analysis and forecasting

The agent models for both applications are analyzed and synthesized as follows.

First, the agent models are analyzed in parallel over 1985/1-1992/9 as a training

period, simply running the linear regression model to the end of that period to cal-

ibrate the agent forecasts. This continues over 1992/10-2000/6 now accompanied

by the MCMC-based BPS analysis running using from 1992/10 data up to time t;

that is, we repeat the analysis with an increasing “moving window” of past data as

we move forward in time.

This continues over the third period to the end of the series, 2000/7-2015/12;

now we also record and compare forecasts as they are sequentially generated. This

testing period spans over a decade, and we are able to explore predictive perfor-

mance over periods of drastically varying economic circumstances, check robust-

ness, and compare benefits and characteristics of each strategy. Out-of-sample fore-

casting is thus conducted and evaluated in a way that mirrors the realities facing

decision makers and portfolio managers.

5.1.4 Forecast accuracy and comparison

As with Section 3.1.4, we compare forecast accuracy using mean squared forecast

errors (MSFE) and log predictive density ratios (LPDR).
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Additionally, we compare the economic gains from these models. To do this we

first construct a two asset portfolio with a risk-free asset (Rft) and a risky asset

(Rt; sector or market index) for each t. Then, the weights of the optimal portfolio

are computed as

wt “ pEpRtq ´Rftq{κ
a

VpRtq,

where EpRtq and VpRtq are the expectation and variance of the forecast of Rt and κ

is the risk averseness of D. After obtaining the portfolio gains for each of the agent

models and BPS, we compare the results using the Sharpe ratio, which is defined

as the average return divided by the standard deviation of returns.

For the market index return application, we do not compare the BPS results with

each agent but rather three benchmarks: linear regression model using aggregate

market predictors, linear regression model using the aggregate market predictors

and all of the sector specific predictors, and the historical average. Linear regres-

sion models are static models estimated estimated using OLS in an expanding win-

dow.

5.2 US equity sector index returns forecasting

Comparing predictive summaries over the out-of-sample period, we see mixed re-

sults in terms of point, distribution, and economic forecasting; see numerical sum-

maries in Table 5.1-5.3. Focusing on the point forecasts, we see that the historical

average of returns outperforms other models and BPS except for the health sector,

where sector specific predictors improve over the historical average. BPS, while

doing fairly well compared to the historical average, does not perform the best

in contrast to other studies. In contrast, BPS outperforms everything in terms of

distribution forecasts (LPDR) for every sector. This is most likely due to BPS im-

proving uncertainty forecasts through its dynamic stochastic volatility. It is notable
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Table 5.1: US sector index forecasting 2000/7-2015/12: Forecast evaluations for
monthly US sector indices, comparing mean squared forecast errors.

RMSE1:T NoDur Durbl Manuf Enrgy Chems BusEq
Historical ave. 3.3811 7.6215 5.8097 5.7668 4.0285 7.3199
Sector spec. 3.3833 7.7307 5.8220 5.8343 3.9981 7.6625
Aggregate 3.5680 7.9105 5.9990 5.8525 4.2524 7.5077
Sector + Aggregate 3.5648 8.0263 6.0494 5.9369 4.2247 7.8721
BPS 3.3884 7.7267 5.8673 5.7957 4.0733 7.4918

RMSE1:T Telcm Utils Shops Hlth Money Other
Historical ave. 5.4410 4.1746 4.2240 3.9284 5.6364 5.0819
Sector spec. 5.3413 4.3724 4.2581 3.8982 5.7901 5.1127
Aggregate 5.5965 4.1963 4.4141 4.1080 5.7970 5.2467
Sector + Aggregate 5.4766 4.4452 4.4450 4.1190 5.9035 5.2343
BPS 5.4195 4.2181 4.2680 3.9106 5.7047 5.1127

that there are larger improvements for some sectors compared to others. In partic-

ular, the greatest improvements are in BusEq and Durbl. Looking at the economic

gains, in terms of the Sharpe ratio, BPS outperforms the rest for all but three out

of the 13 sectors examined. This echoes the results of LPDR, with BPS improving

on economic gains due to its superior uncertainty estimates.

To explore further, three sectors of interest are examined: Durables, Health,

and Money. These three sectors have distinct characteristics that form a wider

snapshot of the economy as a whole. Durables represent the consumer side of the

economy, more volatile and susceptible to shocks that effect consumer spendings,

etc. Health represents the more stable side of the economy, not greatly effected by

market shocks. Money represents the credit side of the economy, most effected by

market shocks, especially the sub-prime mortgage crisis. With these three sectors,

we are able to get a broader sense of how BPS works compared to the other models.

Figs. 5.3-5.5 show the 1-step ahead forecast standard deviations sequentially

computed throughout the testing period. Overall, BPS has a significantly different

trajectory than that of the other models. The standard deviation of BPS is lower be-
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Table 5.2: US sector index forecasting 2000/7-2015/12: Forecast evaluations for
monthly US sector indices, comparing log predictive density ratios for this T “ 186
months. Note: LPDR1:T is relative to BPS.

LPDR1:T NoDur Durbl Manuf
Historical ave. -7.9184 -12.2366 -6.1869 0
Sector spec. -7.3447 -14.5937 -4.7631
Aggregate -12.2502 -16.3419 -8.3995
Sector + Aggregate -11.7935 -16.2838 -8.5360
BPS - - -

LPDR1:T Enrgy Chems BusEq
Historical ave. -1.0418 -3.8302 -20.8570
Sector spec. -3.2243 -2.6033 -26.3108
Aggregate -2.9698 -8.5865 -24.3988
Sector + Aggregate -4.9547 -7.7476 -29.7572
BPS - - -

LPDR1:T Telcm Utils Shops
Historical ave. -11.4318 -1.0405 -4.7843
Sector spec. -5.9891 -11.3608 -5.7258
Aggregate -15.1233 -1.4260 -8.9174
Sector + Aggregate -8.2104 -13.2259 -10.1732
BPS - - -

LPDR1:T Hlth Money Other
Historical ave. -6.4069 -8.4800 -4.4928
Sector spec. -5.7470 -9.6983 -3.8411
Aggregate -11.0820 -8.8511 -6.7959
Sector + Aggregate -11.0579 -10.8348 -5.2145
BPS - - -

fore the subprime crisis but spikes during the crisis, quickly adapting to the shock.

For Durables and Money, the standard deviation of BPS switches between being

larger and smaller than the models compared at different economic periods. For

Health, note that the standard deviation of BPS is almost constantly lower than the

other models. As BPS dominates the other models in terms of LPDR, the results

demonstrate that these models, ubiquitous in the literature, constantly under- or

over-estimate uncertainty.
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FIGURE 5.3: US sector index forecasting 2000/7-2015/12: 1-step ahead forecast
standard deviations sequentially computed at each of the t “ 1:186 months for
Durables.

FIGURE 5.4: US sector index forecasting 2000/7-2015/12: 1-step ahead forecast
standard deviations sequentially computed at each of the t “ 1:186 months for
Health.
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Table 5.3: US sector index forecasting 2000/7-2015/12: Forecast evaluations for
monthly US sector indices, comparing Sharpe ratios for this T “ 186 months.

Sharpe Ratio1:T NoDur Durbl Manuf Enrgy Chems BusEq
Historical ave. 0.9032 0.8259 0.7840 0.7256 0.8297 0.8442
Sector spec. 0.8749 0.6954 0.8256 0.7371 0.9124 0.6958
Aggregate 0.7164 0.3707 0.5354 0.6896 0.6736 0.7457
Sector + Aggregate 0.7447 0.4885 0.5776 0.6527 0.6935 0.6006
BPS 0.8753 0.8332 0.8533 0.8348 0.8660 0.8448

Sharpe Ratio1:T Telcm Utils Shops Hlth Money Other
Historical ave. 0.8079 0.7754 0.8898 0.8591 0.7813 0.8391
Sector spec. 0.8417 0.5492 0.8374 0.8654 0.5021 0.7744
Aggregate 0.6615 0.7425 0.7724 0.7929 0.5386 0.5871
Sector + Aggregate 0.6419 0.5242 0.7437 0.7944 0.4874 0.5465
BPS 0.8543 0.8484 0.8790 0.8761 0.8470 0.8526

Moving on to the on-line posterior means of BPS model coefficients (Figs. 5.6-

5.8), there is a stark contrast across sectors. First, historical average is always

the model with the highest coefficients across sectors. This is expected, as the

historical average almost always outperforms models using predictors over time.

Second, while Health has stable coefficients throughout, Durables and Money see

large shocks in the coefficients around and after the sub-prime mortgage crisis. In

particular, Durables has the most difference in coefficients over time. There is a

drop in the model with aggregate predictors and sector and aggregate predictors.

One interpretation is that during and after the crisis, the consumer economy was

hard hit, leading to the Durables sector being effected more than that of the aggre-

gate market as a whole. Models including aggregate information, which no longer

provide useful information for forecasting, are then downgraded or discounted.

There is, however, an increase of model misspecification as a whole, implied by

the increase in the intercept. Health stays stable over the whole period, suggesting

that the market shocks had little effect in terms of changes in information provided

by the models. For Money, we see all models, except historical average, falling

93



www.manaraa.com

FIGURE 5.5: US sector index forecasting 2000/7-2015/12: 1-step ahead forecast
standard deviations sequentially computed at each of the t “ 1:186 months for
Money.

out of favor after the sub-prime mortgage crisis. This suggests that the shock to

the Money sector was not a shock to the fundamentals (realized in the predic-

tors), since the coefficients imply that neither the sector predictors nor the market

predictors provide sufficient information.

Finally, we move our focus to the model misspecification (Figs. 5.9-5.11; the

sum of on-line posterior means of the BPS model coefficients). Consistent with the

results above, we see that Health is relatively stable throughout, while Durables

and Money drop around to 0.5. As this result represents the overall level of mis-

specification of the models considered, the results imply that both sector specific

predictors and market predictors offer little information to be synthesized during

and after the sub-prime mortgage crisis.

94



www.manaraa.com

FIGURE 5.6: US sector index forecasting 2000/7-2015/12: On-line posterior
means of BPS model coefficients sequentially computed at each of the t “ 1:186
months for Durables.

FIGURE 5.7: US sector index forecasting 2000/7-2015/12: On-line posterior
means of BPS model coefficients sequentially computed at each of the t “ 1:186
months for Health.
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FIGURE 5.8: US sector index forecasting 2000/7-2015/12: On-line posterior
means of BPS model coefficients sequentially computed at each of the t “ 1:186
months for Money.

FIGURE 5.9: US sector index forecasting 2000/7-2015/12: On-line posterior
means of the sum of BPS model coefficients (misspecification) sequentially com-
puted at each of the t “ 1:186 months for Durables.
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FIGURE 5.10: US sector index forecasting 2000/7-2015/12: On-line posterior
means of the sum of BPS model coefficients (misspecification) sequentially com-
puted at each of the t “ 1:186 months for Health.

FIGURE 5.11: US sector index forecasting 2000/7-2015/12: On-line posterior
means of the sum of BPS model coefficients (misspecification) sequentially com-
puted at each of the t “ 1:186 months for Money.
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5.3 US equity market index returns forecasting

For the analysis of US equity market index returns, we compare BPS– synthesiz-

ing projected sector information– against conventional linear regression models

with market aggregate predictors, aggregate and sector predictors, and historical

average. Compared to the mixed results in Section 5.2, BPS exhibits superior per-

formance on all three measures (summarized in Table 5.4), comparing predictive

summaries over the out-of-sample period. Noteworthy is BPS improving over the

historical average in terms of point forecast, which BPS did not for the results

in Section 5.2. We see that OLS (Full), the linear regression with all sector in-

formation, performs significantly worse than all models and methods considered.

Compare this to BPS, which uses the same set of information as OLS (Full), we

see how BPS improves by dynamically learning the dependencies and biases across

and within sectors and dynamically adapt to different economic climates.

Figs. 5.12-5.16 summarize sequential analysis for 1-step ahead forecasting.

Fig. 5.12 shows the 1-step ahead MSFE1:t for each time t. Even though the margins

are small, BPS almost uniformly dominates, except at the beginning of the time

period where the MSFE is somewhat unstable. During the sub-prime mortgage cri-

sis, OLS (Full) significantly increases in forecast error. The biggest reason for this

is overfitting, with 5ˆ 14 “ 70 predictors used for OLS (Full), it significantly lacks

Table 5.4: US market index forecasting 2000/7-2015/12: Forecast evaluations for
monthly US market index, comparing mean squared forecast errors, log predictive
density ratios, and Sharpe ratios for this T “ 186 months. Note: LPDR1:T is relative
to BPS.

MSFE1:T LPDR1:T Sharpe Ratio
OLS (Aggregate) 22.1276 -11.4728 0.5907
OLS (Full) 36.2512 -49.1352 0.3445
Historical Ave. 20.5635 -7.4650 0.8037
BPS 20.1323 - 0.8759
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FIGURE 5.12: US market index forecasting 2000/7-2015/12: Mean squared 1-
step ahead forecast errors MSFE1:tp1q sequentially revised at each of the t “ 1:186
months.

adaptability over key structural changes and shocks in the economy. BPS, on the

other hand, remains stable over time improving over the rest in a robust fashion

due to its dynamic nature.

Fig. 5.13 confirms that BPS performs uniformly better than, or on par with, the

other models based on LPDR measures for distribution forecasts. Major shocks and

times of increased volatility have substantial impact on the relative performance,

again most notable at the beginning of the sub-prime mortgage crisis. BPS is able

to adapt to maintain improved forecasting performance both in terms of location

and risk characterization, a key positive feature for portfolio managers who are

dependent on accurate risk assessment.

The LPDR results are indicative of improved uncertainty assessments by BPS.

Looking at the 1-step ahead forecast standard deviations (Fig. 5.14), BPS dynam-

ically adapts over the other methods by shrinking its forecast standard deviation

during periods of stability (pre-sub-prime mortgage crisis) and increasing it during

periods of shocks and instabilities (post-sub-prime mortgage crisis). Notably, the
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FIGURE 5.13: US inflation rate forecasting 1990/Q1-2014/Q4: 1-step ahead log
predictive density ratios LPDR1:tp1q sequentially revised at each of the t “ 1:186
months. The baseline at 0 over all t corresponds to the standard BPS model.

standard deviation of OLS (Full) has multiple spikes in the forecast standard devi-

ation, even during periods of stability. This, again, is most likely due to OLS (Full)

overfitting and as a result fail to assess the correct level of risk.

Fig. 5.15 exhibits the on-line posterior means of BPS model coefficients sequen-

tially computed for each t. Each coefficient represents the information provided by

each sector. Thus, when a certain coefficient goes up (down), it can be inferred

that the information from that sector is providing more (less) information to the

forecast of the market. For example, while coefficients are relatively stable before

the sub-prime mortgage crisis, the coefficients change drastically after the crisis.

In particular, there is a heavier reliance in information from more stable sectors:

Utilities, Energy, and Manufacturing, while relying less on volatile sectors: Money

and Durables. This can be seen as a shift in the market, where the financial and

consumer side of the market representing proportionally less of the economy.

Finally, the level of misspecification (Fig. 5.16) is stable compared to the re-

sults from Section 5.2. There are several clear trends, also seen in the other study,
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FIGURE 5.14: US market index forecasting 2000/7-2015/12: 1-step ahead forecast
standard deviations sequentially computed at each of the t “ 1:186 months.

FIGURE 5.15: US market index forecasting 2000/7-2015/12: On-line posterior
means of BPS model coefficients sequentially computed at each of the t “ 1:186
months.

101



www.manaraa.com

FIGURE 5.16: US market index forecasting 2000/7-2015/12: On-line posterior
means of the sum of BPS model coefficients (misspecification) sequentially com-
puted at each of the t “ 1:186 months.

where we see a gradual decrease in misspecification, a shock during the sub-prime

mortgage crisis, and volatile periods after the shock. From this, inferences can

be made on how sector information fully forecasts market returns. Notably, the

volatile period after the crisis is indicative on the uncertainty about the model mis-

specification as a whole, where signals from sector information are more volatile

and less useful compared to pre-crisis.

5.4 Summary

The two finance applications illustrate the effectiveness of BPS under different

data and settings, while exploring interesting ways BPS can be used to improve

forecasts and economic gains. The first study applies BPS to predictability of sector

index returns. By dynamically synthesizing forecasts coming from agents with

different sources of information, BPS improves in terms of distribution forecasts

and economic gains for most sectors. Further analysis into the BPS estimates and

parameters provides insight into characteristics of the returns for each sector.
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The second study furthers the application of BPS by defining agents as a pro-

jection of sector information onto the market returns, in order to improve return

predictability of the market. By creating agents who represent sector information,

via filtered projection, BPS is able to synthesize the information from multiple

facets of the economy to improve the overall forecast of the market. The BPS

synthesized forecasts of market returns dominates other models in terms of point,

distribution forecasts, and economic gains. An analysis of on-line BPS coefficients

draws interesting parallels and insight into the economic regime changes over the

last decade.
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6

BPS Extensions for Temporal Misspecification

6.1 Context, literature, and methodology

The literature on model misspecification has been almost solely limited to the pa-

rameter space (George and McCulloch, 1993, 1997; George et al., 2008; West,

2003; Clyde and George, 2004; Carvalho et al., 2007, 2008; Yoshida and West,

2010; Wang, 2010; Chen et al., 2011; Korobilis, 2013). However, especially in time

series analysis, temporal misspecification plays a significant role as well, though it

is almost never discussed or explored. The concept of temporal misspecification

expands the discussion of D’s specification of a model to the temporal domain,

such as the length of data D wants to use and which sampling frequency is best

suited for the decision problem. There are inherent tradeoffs within the temporal

specificationsD can make. This chapter discusses these tradeoffs and demonstrates

how the framework of BPS can mitigate these problems and improve in terms of

the decision goals.

One problem concerns optimal learning lengths for analyzing complex data

with possible structure breaks and shocks. Statistical theory stipulates that a longer
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learning length is better, as the model accrues more information. However, this is

only valid when the model is correctly specified and assuming a true data gener-

ating process that is static over time. Neither of these assumptions are considered

true under the views of subjective Bayesian thinking. As it is often seen in time se-

ries data– economic time series, for example– there are multiple structural changes

and shocks that make it impossible to assume one model, with one set of covari-

ates, to hold true over time. This brings up an interesting and challenging tradeoff

for D: more data are needed to get better estimates, but shocks and structural

changes can “throw off” these estimates or make them obsolete. We call this the

learning-adaptability tradeoff, as D has to sacrifice learning (data) to be adaptable

and adaptability for more learning (data). In the finance and economics literature,

we see this tradeoff decision being made without clear discussion or acknowledge-

ment. For example, the Dow Jones Industrial Average, one of the standard indices

used in financial research, has historical data going back to 1896. However, we see

very little research being done with learning periods going back beyond 1960. In

more egregious cases, we see researchers using data before or after a shock in order

to get stable estimates. Conscious or unconscious, this tradeoff is made constantly

by researchers and practitioners.

The second key problem concerns the specification of data frequency. For ex-

ample, a portfolio manager or policy maker might be tasked to forecast an index a

month ahead. For many indices, especially in finance, data are sampled at different

frequencies, from annual to tick which is in milliseconds. Again, statistical theory

will stipulate that, if the model is correctly specified, more data is better. However,

using millisecond tick data to forecast a month ahead would be pointless, as tick

data are contaminated with microstructure noise, other dynamics, etc. and include

very little information that would be helpful to D’s decision problem. Additionally,

the higher the frequency, the longer the forecast horizon will be. Using monthly
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data to forecast a month ahead would be 1-step ahead, while using daily data to

forecast a month ahead would be around 22-step ahead, depending on the length

of the month. As models are inherently designed and fit to forecast 1-step ahead

quantities, increasing the forecast horizon necessarily makes the forecasts more

uncertain. Herein lies the temporal tradeoff: the finer the frequency the more ac-

curate it is in terms of the mean, but less accurate in terms of risk assessment. We

call this the accuracy-uncertainty tradeoff.

Both of these problems of temporal misspecification will be addressed in this

chapter using topical problems in finance, demonstrating the effectiveness of the

BPS based methods proposed.

6.2 Temporal misspecification in rolling window analysis

The learning-adaptability tradeoff is addressed and mitigated by applying the frame-

work of BPS on rolling window size uncertainty. Rolling window methods are com-

mon in finance and economics, where static models are still standard. The ques-

tion of optimal rolling window size is rarely discussed except in some cases (Clark

and McCracken, 2009; Rossi and Inoue, 2012; Inoue et al., 2017). Extending the

BPS framework to the temporal domain, we can construct agents with different

rolling window sizes, or temporal information. For this new method, Bayesian

inter-temporal synthesis (BITS), each agent will have more past information than

the previous agent (longer windows). The additional (past) information, however,

is not guaranteed to be useful information for forecasting, as it may contain shocks,

outliers, and structural breaks that skew agent forecasts. Synthesizing these agents

under the framework of BPS will dynamically infer biases and dependencies of this

added information and adapt accordingly, discounting past data.
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6.2.1 Data

For this study, we analyze US equity market returns data from 1985/1-2015/12

as with the application in Chapter 5. This period is of special interest, as the sub-

prime mortgage crisis and great recession of the late 2000s occur and cause great

temporal uncertainty before, during, and after the crisis.

Accompanied by the market returns are multiple predictors used in Welch and

Goyal (2008). These are, Volatility: the square root of the sum of daily squared

(de-meaned) returns on the value-weighted industry portfolio, ldp: the difference

between the log of dividends and the log of prices, ldy: the difference between

the log of dividends and the log of lagged prices, bmr: the ratio of book value to

market value for the Dow Jones Industrial Average computed on a quarterly basis

and interpolated through a cubic spline to get monthly estimates, ntis: the ratio

of 12-month moving sums of net issues divided by the total end-of-year market

capitalization, eqis: the ratio of equity issuing activity as a fraction of total issuing

activity, epr: the difference between the log of earnings and the log of prices, dpr:

the difference between the log of dividends and the log of earnings, tbl: 3- month

treasury bill, lty: long-term government bond yield, ltr: long term rate of returns,

AAA: long term bond returns for AAA rated bonds, BAA: long term bond returns

for BAA rated bonds, and infl: US inflation.

6.2.2 Agents and BPS specifications

For the analysis of market index returns, we have J “ 4 agents. Labeling them

M*, the agent models vary in rolling window size only using the all of the predic-

tors above: M1- window size=18; M2- window size=24; M3- window size=36;

M4- window size=60. All models are linear regressions estimated using OLS. The

window sizes are selected to cover a broad range of temporal spaces.
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In the dynamic BPS models, we take initial priors as θ0 „ Npm, 0.01Iq with

m “ p0,11{pq1 and 1{v0 „ Gp5, 100q. The discount factor for BPS is based on

pβ, δq “ p0.99, 0.95q.

6.2.3 Data analysis and forecasting

The agent models for both applications are analyzed and synthesized following

Section 5.1.3.

6.2.4 Forecast accuracy and comparison

As with Section 3.1.4, we compare forecast accuracy using mean squared forecast

errors (MSFE) and log predictive density ratios (LPDR). The same model using an

expanding window (using 1: t) is also compared.

6.2.5 Bayesian inter-temporal synthesis

Table 6.1 summarizes the out-of-sample results of the agents and BITS. Looking at

the results from the agents with varying temporal specifications, it is evident that

longer windows provide better results in terms of point and distribution forecasts.

From this we might conclude that longer windows, and perhaps an expanding

window using the whole set of data, is better. However, this overview does not

give a full picture of the problem and will be explored later in this section in the

sequential analysis. Overall, we see that BITS is able to improve over the other

agents significantly in both point and distribution forecasts. Comparing the results

with an expanding window, BITS outperforms, even though the expanding win-

dow analysis performs better than the agents included in the BITS analysis. The

results indicate that BITS benefits from synthesizing varying information (inclusion

of data) and adapts dynamically to the data to improve accuracy. More crucially,

since the temporal space is closed (within the framework used), this demonstrates
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the ability of BITS to achieve superior accuracy beyond the whole temporal space.

Figs. 6.1-6.4 summarize sequential analysis for 1-step forecasting. Fig. 6.1

shows the 1-step ahead measures MSFE1:t for each time t. BITS uniformly out-

performs all window sizes throughout the whole test period. Also notable is how

robust the MSFE is for BITS compared to the agents. During crisis periods, partic-

ularly the sub-prime mortgage crisis, MSFE jumps for all window sizes, but more

so for longer window sizes. This is due to the lack of adaptability in the models

with longer window size, even if the overall MSFE is lower than those of shorter

window sizes. BITS, on the other hand, stays relatively level during and after the

shock, with the majority of relative gains made during these periods.

The distribution forecast results in Fig. 6.2 mirrors the result from the point

forecasts. Longer window sizes suffer the most during crisis periods, while shorter

window sizes benefit from adaptability, but perform worse in more stable times.

The learning-adaptability tradeoff is more prevalent for distribution forecasts, as

the measurement of uncertainty is more affected by (over- or under-) learning. As

with the point forecasts, BITS is superior compared to all window sizes available,

demonstrating the improved uncertainty forecasts and mitigating, or eliminating,

temporal uncertainty, at least under the conditions considered.

Table 6.1: US market index forecasting 2007/7-2015/12: Forecast evaluations
for monthly US market index, comparing mean squared forecast errors and log
predictive density ratios for this T “ 186 months. Note: LPDR1:T is relative to BITS
and Exp. window is expanding window using data from 1: t.

MSFE1:T LPDR1:T

Window=18 363.6853 -217.9018
Window=24 136.9210 -141.5382
Window=36 90.9580 -90.6934
Window=60 51.5363 -65.9203
Exp. window 24.8914 -22.0135
BITS 21.0956 -
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FIGURE 6.1: US market index forecasting 2007/7-2015/12: Mean squared 1-step
ahead forecast errors MSFE1:tp1q sequentially revised at each of the t “ 1:186
months.

FIGURE 6.2: US market index forecasting 2007/7-2015/12: 1-step ahead log
predictive density ratios LPDR1:tp1q sequentially revised at each of the t “ 1:186
months. The baseline at 0 over all t corresponds to the standard BPS model.
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In terms of forecast standard deviations, longer window sizes tend to have

smaller uncertainty measures, with large spikes for the shortest window size. The

uncertainty measure is tighter for models with more data, as they are able to learn

more. This can backfire during structural changes or shocks, as demonstrated by

a bump in LPDR in Fig.6.2. On the other hand, shorter windows have spikes that

are unreasonable (120+ at around 2002) because they adapt too much. BITS,

compared to other results, is relatively stable throughout the estimation period.

The on-line posterior means of BITS coefficients confirm how BITS is able to

adapt over time. At the beginning of the analysis, the order of coefficients is in

line with the forecast ability of each window size (larger to smaller window size).

A gradual decrease in all coefficients up until the sub-prime mortgage crisis can

be seen, which is indicative of how these models are misspecified as a whole. In

other words, none of the models provide sufficient information. At the sub-prime

mortgage crisis, we see a large shock in coefficients, as models with longer win-

dow sizes fall off to zero, while shorter window size models rise. This reflects the

FIGURE 6.3: US market index forecasting 2007/7-2015/12: 1-step ahead forecast
standard deviations sequentially computed at each of the t “ 1:186 months.
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FIGURE 6.4: US market index forecasting 2007/7-2015/12: On-line posterior
means of BITS model coefficients sequentially computed at each of the t “ 1:186
months.

change in the market after the crisis: models learnt on pre-crisis data are deemed

obsolete, while more adaptive models quickly adjust to the new regime. By shift-

ing the coefficients dynamically, BITS weighs the tradeoff between learning and

adaptability, achieving improved forecast accuracy over a long period of time with

robust results.

6.3 Frequency selection in long term forecasting

The problem of frequency selection is tackled by applying the framework of BPS

with agents varying in data frequency used. For example, if D is tasked to forecast

a month ahead, data will be spliced into multiple frequencies, including monthly,

weekly, daily, and everything in between. Each agent will then produce k-step

ahead forecasts to forecast the quantity of interest. We can consider each agent as

having varying information denseness, referring to how fine or coarse the data is.

By synthesizing these agents, the BPS framework allows for dynamic learning of

the dependencies and biases of how, for example, daily data provides information

112



www.manaraa.com

on monthly quantities. The resultant method is called frequency auto-splicing syn-

thesis (FASST), as the method auto-splices the data into varying frequencies to be

later synthesized.

6.3.1 Data

For this study, we analyze daily US equity market log prices from 1999/3-2014/12.

The data is then split up into lower frequencies up until they are monthly data.

Long term forecasts are significantly impaired during the sub-prime mortgage crisis

at around 2008 due to structural breaks, providing a challenging environment to

test the predictive ability of varying temporal specifications.

Accompanying the market log prices, we use the Fama-French three factors

(Fama and French, 1993), used often in the finance literature, as predictors. These

are; Mkt-RF: the performance of the (risky) market as a whole to a risk-free asset

(daily returns), SMB: Small Minus Big, a factor portfolio that measures the perfor-

mance of small cap stocks relative to large cap stocks (daily returns), and HML:

High Minus Low, a factor portfolio that measures the performance of “value” stocks

compared to “growth” stocks (daily returns).

6.3.2 Agents and BPS specifications

For the analysis for market log prices, we have J “ 6 agents. Labeling them

M*, the agent models vary in the frequency used: M1- 1-step, monthly frequency;

M2- 2-step, interval at every two weeks; M3- 4-step, weekly frequency; M4- 5-

step, interval at every four days; M5- 10-step, interval at every other day; M6- 20-

step, daily frequency. All models are estimated using an ARp1q term and dynamic

regression on the Fama-French three factors as predictors. Each agent model then

forecasts the log prices at the end of the month, e.g., M6 forecasts 20-steps ahead

using daily data, M3 forecasts 4-steps ahead using weekly data, etc.
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FIGURE 6.5: US market index forecasting 2007/2-2014/12: US market index (re-
turns ˆ100 for % basis).

Prior specifications for the DLM state vector and discount volatility model in

each is based on θ0|v0 „ Np0, v0Iq and 1{v0 „ Gp1, 0.01q, using the usual pθ, vq

DLM notation (West and Harrison, 1997, Chap 4). Each agent model uses standard

discount factor pβq specification for state evolution variances and discount factor

pδq for residual volatility; we use pβ, δq “ p0.99, 0.95q in each of these agent models.

In the dynamic BPS models, we take initial priors as θ0 „ Npm,Cq with m “

p0,11{pq1, C “ diagp0.001, 10Iq, and 1{v0 „ Gp5, 0.01q. The discount factor for BPS

is based on pβ, δq “ p0.95, 0.99q.

6.3.3 Data analysis and forecasting

The 6 agent models are analyzed and synthesized as follows. First, the agent

models are analyzed in parallel over 1999/3-2003/1 as a training period, simply

running the DLM forward filtering to the end of that period to calibrate the agent

forecasts. This continues over 2003/2-2007/1 now accompanied by the calibra-

tion of the other forecast combination methods. Also, at each quarter t during this

period, the MCMC-based BPS analysis is run using from 2003/2 data up to time t;
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that is, we repeat the analysis with an increasing “moving window” of past data as

we move forward in time. This continues over the third period to the end of the

series, 2007/2-2014/12; now we also record and compare forecasts as they are

sequentially generated. This testing period spans over a quarter century, and we

are able to explore predictive performance over periods of drastically varying eco-

nomic circumstances, check robustness, and compare benefits and characteristics

of each strategy. Out-of-sample forecasting is thus conducted and evaluated in a

way that mirrors the realities facing portfolio managers.

6.3.4 Forecast accuracy and comparison

As with Section 3.1.4, we compare forecast accuracy using mean squared forecast

errors (MSFE) and log predictive density ratios (LPDR).

We compare forecasts from FASST with standard Bayesian model uncertainty

analysis (i.e. BMA) in which the agent densities are mixed with respect to sequen-

tially updated model probabilities (e.g. Harrison and Stevens, 1976; West and Har-

rison, 1997, Sect 12.2). In addition, we compare with simpler, equally-weighted

averages of agent forecast densities using linear pools (equally-weighted arithmetic

means of forecast densities).

6.3.5 Frequency auto-splicing synthesis

Table 6.2 summarizes the out-of-sample results of the temporal specifications con-

sidered and FASST. First to note is how there is a clear tradeoff between point

forecast accuracy and distribution forecast accuracy. Using higher frequency data

generally produces more accurate point forecasts, as seen in the MSFE results, with

the model using monthly data performing the worst. On the other hand, lower fre-

quency data generally produces better distribution (uncertainty) forecasts, as seen

in the LPDR results, with the model using daily data performing the worst. FASST
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Table 6.2: US market index forecasting 2007/2-2014/12: Forecast evaluations
for monthly US market index, comparing mean squared forecast errors and log
predictive density ratios for this T “ 100 months. Note: LPDR1:T is relative to
FASST.

MSFE1:T LPDR1:T

1-step 0.002643 -11.8976
2-step 0.002616 -10.2972
4-step 0.002128 -32.5566
5-step 0.002431 -67.6783
10-step 0.002021 -256.5949
20-step 0.002265 -267.6800
BMA 0.002604 -8.0748
LinP 0.002233 -7.5011
FASST 0.002025 -

mitigates this tradeoff, demonstrated by both point and distribution forecasts being

either the best (LPDR) or a close second (MSFE) compared to the other models.

By synthesizing information coming from multiple frequencies, FASST essentially

takes the better of two worlds, good mean assessments from high frequency data

and good uncertainty assessments from low frequency data. BMA, for example,

is unable to achieve this, as it measures model probabilities based on distribution

forecasts, favoring low frequency data due to its uncertainty measure. Linear pool

also mitigates the temporal misspecification, though significantly less compared to

FASST.

Figs. 6.6-6.10 summarize sequential analysis for 1-step forecasting. Fig. 6.6

shows the point forecast ability over the testing period. Over the whole period,

FASST is almost equivalent, in terms of point forecasts, to the best model (10-step

ahead model using data from every other day). The forecast accuracy is almost

proportional to the data frequency used. Additionally, BMA degenerates to one

of the worst models (Fig. 6.7) and shifts to the worst model at the end. Overall,

FASST demonstrates its ability to outperform most models and strategies over the

period examined.

116



www.manaraa.com

Distribution forecasts compared using LPDR (Fig. 6.8) contrasts with the MSFE

results. The best models in terms of MSFE are now one of the worst models, con-

sistently underperforming throughout the testing period. BMA benefits here from

degenerating to the model with monthly data. However, FASST does outperform

all other models throughout most of the testing period, improving on all in terms

of distribution forecasts.

The improvement in terms of distribution forecasts is partly due to improved

uncertainty forecasts under FASST. Focusing on the forecast standard deviation

(Fig. 6.9), models using higher frequency data have significantly lower forecast

standard deviations. This is because the models are fitted on data with smaller

variability, since daily price variation is much smaller than monthly price variation,

and the models fail to adapt uncertainty to long term forecasts. Even for mod-

els using low frequency, the discrepancies with the forecast standard deviations

from FASST are notable. In particular, forecast standard deviations using FASST

FIGURE 6.6: US market index forecasting 2007/2-2014/12: Mean squared 1-step
ahead forecast errors MSFE1:tp1q sequentially revised at each of the t “ 1:100
months.
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FIGURE 6.7: US market index forecasting 2007/2-2014/12: On-line model proba-
bilities for BMA sequentially computed at each of the t “ 1:100 months.

FIGURE 6.8: US market index forecasting 2007/2-2014/12: 1-step ahead log
predictive density ratios LPDR1:tp1q sequentially revised at each of the t “ 1:100
months. The baseline at 0 over all t corresponds to the standard BPS model.
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FIGURE 6.9: US market index forecasting 2007/2-2014/12: 1-step ahead forecast
standard deviations sequentially computed at each of the t “ 1:100 months.

drastically jump during the sub-prime mortgage crisis, doubling that of the largest

standard deviation from the models, though quickly converging to the levels of

other models. This additional adaptability allows FASST to improve distribution

forecasts over all models.

The on-line posterior means of FASST model coefficients are quite different

from the coefficients seen in the other studies. While most studies have coefficients

summing to roughly one, with all coefficients within r0, 1s for the most part, some

coefficients are above one and significantly negative in another. In essence, these

two coefficients (models using the highest frequency data) counter-balance each

other in order to improve forecasts. This is a major feature of BPS approaches:

The analysis properly integrates and responds to time-varying interdependencies

among agents. Another interesting point to note is how, apart from the coefficients

for 10- and 20-step ahead models that counter-balance each other, the model with

the highest coefficient is the 4-step ahead model, which sits in the middle in terms

of point and distribution forecasts. From this it can be inferred that FASST bases
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FIGURE 6.10: US market index forecasting 2007/2-2014/12: On-line posterior
means of FASST model coefficients sequentially computed at each of the t “ 1:100
months.

its forecasts on the most balanced model, then adapts by changing the coefficients

of the other models. Interestingly, the models with the best point forecasts (1- and

2-step) is close to zero. This would indicate that FASST relies less on a model’s

point forecast ability but more on the uncertainty measurements. However, unlike

BMA, FASST does not degenerate to the best distribution forecast model and is

able to improve in terms of both point and distribution forecasts due to its dynamic

adaptability.

6.4 Summary

Temporal misspecification is a critically important– yet underdeveloped– subject in

the analysis and decision making of time series data. The two applications pre-

sented in this chapter tackle the two key problems in temporal misspecification:

rolling window specification and frequency specification for long terms forecasts.

Agents are considered as models with different window sizes or frequency, there-

fore containing different information. By dynamically synthesizing the set of vary-
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ing information, BPS improves forecast performances and mitigates the problem

of temporal misspecification. The dynamic dependence among these agents (infor-

mation) are exploited by BPS to dominate the available temporal space and provide

insight into the temporal relationship within a time series.
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7

BPS for Mixed-Frequency Time Series
Forecasting

7.1 Context, literature, and methodology

Time series data are often available at multiple sampling frequencies. For exam-

ple, US Gross Domestic Product (GDP) is released every quarter, while many other

economic variables (including inflation, unemployment, etc.) are released every

month, not to mention financial variables released everyday or every micro second.

These higher frequency indicators often contain crucial information in understand-

ing the economy. Therefore, it is important to exploit these data in order to make

more informed policy decisions.

One approach that has become particularly popular among practitioners and

researchers is the mixed data sampling regression (MIDAS) proposed by Ghysels

et al. (2005) in the context of utilizing high frequency financial data, and later

extended for macroeconomic applications by Clements and Galvao (2008, 2009).

The basic idea of the MIDAS regression is to fit some function, often polynomial

or some variation, to the higher frequency, which is then included in the lower
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frequency regression,

yt “ β0 ` β1BpL
1{m; θqx

pmq
t ` ε

pmq
t

where BpL1{m; θq is the lag distribution.

While the MIDAS regression provides practical utility, it has several shortcom-

ing. The first, and perhaps most important, is that MIDAS does not provide any

theoretical and conceptual foundation to combine information from different fre-

quencies from a Bayesian perspective. The question on how a subjective Bayesian

can incorporate information from different frequencies is unanswered. Second, the

MIDAS form is heavily restrictive in terms of application, especially in the direc-

tions of dynamics and multivariate data.

Taking the approach of incorporating information from multiple frequencies,

we propose to utilize the BPS framework in order to achieve potentially superior

results and flexibility compared to the MIDAS regression. The proposed Bayesian

mixed frequency synthesis (MFS) is a two step framework. The first step projects

the high frequency data onto the low frequency of interest. This is done by re-

gressing the high frequency data to the low frequency data using any method D

might find useful in extracting the necessary information. By projecting the data,

the resultant forecast distribution from D’s chosen process is essentially filtered

information pertaining to the quantity of interest. D can then generate filtered

information for multiple sources of high frequency data. Upon generating multiple

sets of information from the high frequency data, D synthesizes them using the BPS

framework. From a Bayesian point of view, the framework utilizes multiple priors

drawn from different agents using different data sources. Those priors are then

calibrated for dependencies, biases, and miscalibration as they are synthesized to

maximize the usage of information provided from these agents (mixed frequency

data sources).
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Not only does Bayesian mixed frequency synthesis provide a theoretically and

philosophically coherent framework for synthesizing data from multiple frequen-

cies, it also grants D flexibility in terms of modeling. For example, D can use a

linear regression or DLM to project the information, but if the frequency disparity

is high (high frequency data sampled at very small intervals; for example, finance

data sampled every minute), D can utilize shrinkage methods (Nakajima and West,

2013a), PCA, or polynomial functions to reduce the dimension. This can be speci-

fied for each high frequency D might want to include to forecast the low frequency

data. Additionally, D can specify the BPS synthesis function, αtpyt|Htq, to express

D’s belief on how these information sources should be synthesized.

7.2 Nowcasting GDP

7.2.1 Data

We analyze quarterly US macroeconomic data, focusing on nowcasting GDP with

1-quarter ahead interests using monthly US macroeconomic data. The study in-

volves one quarterly macro series and three monthly macro series (Fig. 4.1): GDP

(quarterly), industrial production (IP; monthly), employment (EMP; monthly), and

capacity utilization (CU; monthly) in the US economy from 1970/1 to 2015/12, a

context of topical interest (Clements and Galvo, 2014; Aastveit et al., 2014, 2016).

Quarterly real output growth (GDP) is measured as the log-difference of the real

GDP series. We focus on nowcasting GDP using past values of itself and the higher

frequency predictors underlying a set of four time series models– the J “ 4 agents–

to be evaluated, calibrated, and synthesized. The time frame includes key periods

that warrant special attention: the early 1990s recession, the Asian and Russian

financial crises in the late 1990s, the dot-com bubble in the early 2000s, and the

sub-prime mortgage crisis and great recession of the late 2000s. Sharp shocks
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FIGURE 7.1: US macroeconomic series 1991/Q1-2015/Q4: Quarterly and monthly
US macroeconomic time series (indices ˆ100 for % basis).

to the US economy are evident during this period testing the predictive ability of

any models and strategies under pressure. For any mixed frequency strategy to be

effective and useful, its predictive performance must be robust under these con-

ditions; most traditional macroeconomic models suffer significant deficiencies in

such times.

7.2.2 Agents and BPS specifications

For this analysis of GDP nowcasting, we have J “ 4 agents. Labeling them M*, the

agent models are: M1- ARp3q; M2- CUp3q; M3- EMPp3q; M4- IPp3q. M1 is a time-

verying ARp3q for GDP and the quarterly period t, which is straightforward. On the

other hand, M2-M4 need further discussion. At each quarter t, we denote t{m as

the month m “ 1 : 3 in that quarter t. Thus, t{1 is the first month of the quarter and

so on. At any given t{m, M2-M4 forecast GDP at t using lagged monthly data up
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until t{m as predictors. For example, t{2 would be data from [t{2 t{1 t´ 1{3] if we

were to use lags of 3. These are also called leads, as these monthly predictors lead

into the quarter. A lead of 0 indicates that there are no leads and the predictors are

only up until t, while a lead of 2 indicates that the predictors are up until t ` 1{2;

the second month into the next quarter.

The crucial idea here is that each M*, except for M1, is a projection of the high

frequency information onto the low frequency quantity of interest, GDP. By regress-

ing the higher frequency data onto GDP, we are essentially filtering the monthly

information pertaining to GDP. Thus, the forecasts coming from each model can be

seen as filtered information to be later synthesized to maximize information gained

in terms of the lower frequency quantity of interest.

Each model is fit using a DLM. Prior specifications for the DLM state vector

and discount volatility model in each is based on θ0|v0 „ Np0, v0Iq and 1{v0 „

Gp1, 0.01q, using the usual pθ, vq DLM notation (West and Harrison, 1997, Chap 4).

Each agent model uses standard discount factor pβq specification for state evolution

variances and discount factor pδq for residual volatility; we use pβ, δq “ p0.99, 0.95q

in each of these agent models.

In the dynamic BPS models, we take initial priors as θ0 „ Npm, Iq with m “

p0,11{pq1, and 1{v0 „ Gp5, 0.01q. The discount factor for BPS is based on pβ, δq “

p0.99, 0.95q.

7.2.3 Data analysis and forecasting

The 4 agent models are analyzed and synthesized as follows. First, the agent mod-

els are analyzed in parallel over 1970/Q1-1978/Q2 as a training period, simply

running the DLM forward filtering to the end of that period to calibrate the agent

forecasts. This continues over 1978/Q3-1990/Q4 now accompanied by the cali-

bration of the MIDAS regression using ARp3q-U-MIDAS (Foroni et al., 2015), for
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each of the three high frequency series (denoted by MIDASp˚q, where * is the high

frequency data used). Also, at each quarter t during this period, the MCMC-based

BPS analysis is run using from 1978/Q3 data up to time t; that is, we repeat the

analysis with an increasing “moving window” of past data as we move forward in

time. We do this for the traditional 1-step focused BPS model with no leads (i.e.

not using any monthly data between t and t` 1), and– separately and in parallel–

for a 1-step ahead focused BPS model with a lead of two months, utilizing data

two months into the quarter. This continues over the third period to the end of the

series, 1991/Q1-2015/Q4; now we also record and compare forecasts as they are

sequentially generated. This testing period spans over a quarter century, and we

are able to explore predictive performance over periods of drastically varying eco-

nomic circumstances, check robustness, and compare benefits and characteristics

of each strategy. Out-of-sample forecasting is thus conducted and evaluated in a

way that mirrors the realities facing decision and policy makers.

7.2.4 Forecast accuracy and comparison

As with Section 3.1.4, we compare forecast accuracy using mean squared forecast

errors (MSFE) and log predictive density ratios (LPDR).

7.3 Dynamic MFS and nowcasting

Comparing predictive summaries over the out-of-sample period, BPS improves

forecasting accuracy relative to the TVARp3q model and three MIDAS regressions;

see numerical summaries in Table 7.1. Focusing on the point nowcast, excluding

MFS, we see that TVARp3q outperforms MIDAS for no leads but MIDASpEMP q and

MIDASpIP q outperforming TVARp3q when we allow leads. This is consistent with

previous research, as we expect MIDAS to perform better with leading information

into the quarter, getting a better grasp on the economy to come. MFS, on the other
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Table 7.1: US GDP nowcasting 1991/Q1-2015/Q4: Nowcast evaluations for quar-
terly US GDP, comparing mean squared forecast errors and log predictive density
ratios for this T “ 100 quarters. Note: LPDR1:T is relative to BPS and t ´# is the
number of leads into the next quarter.

t{0 t{2
MSFE1:T LPDR1:T MSFE1:T LPDR1:T

ARp3q 0.3077 -73.0468 0.3077 -82.2589
MIDASpCUq 0.3420 -25.9444 0.3938 -57.8255
MIDASpEMP q 0.3669 -46.8859 0.2977 -32.1340
MIDASpIP q 0.3368 -29.6841 0.3077 -64.3427
MFS 0.2682 - 0.2273 -

hand, significantly outperforms all of the other models. By filtering, calibrating,

and synthesizing the information from the higher frequency data, MFS is able to

achieve superior point forecasts over MIDAS. Additionally, allowing for leads, MFS

outperforms itself with no leads, demonstrating how utilizing high frequency data

can improve nowcasting throughout a quarter. These results are echoed for the

distribution nowcast as well, as MFS is available to ascertain better measures of

uncertainty from the high frequency data. We also see that comparing MFS with

and without leads gives us an LPDR of -9.2121, improving over itself using data in

between quarters.

We further our analysis by reviewing summary graphs showing aspects of analy-

ses evolving over time during the testing period, a period that includes challenging

economic times that impede good predictive performance.

Figs. 7.2 and 7.3 show the 1-step ahead measures MSFE1:tp1q for each time t for

no leads and two month leads. For no leads, we see that TVARp3q outperforms the

rest up until the sub-prime mortgage crisis, but MFS eventually surpasses TVARp3q.

With leads, MFS outperforms the rest throughout most of the period of analysis.

Note particularly that the shock during the sub-prime mortgage crisis is mitigated

in MFS, while the other models suffer greatly as they poorly adapt.
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FIGURE 7.2: US GDP nowcasting 1991/Q1-2015/Q4: Mean squared 1-quarter
ahead forecast errors MSFE1:tp1q sequentially revised at each of the t “ 1:100 quar-
ters with no leads.

FIGURE 7.3: US GDP nowcasting 1991/Q1-2015/Q4: Mean squared 1-quarter
ahead forecast errors MSFE1:tp1q sequentially revised at each of the t “ 1:100 quar-
ters with leads of two months.
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The distribution forecast results, Figs. 7.4 and 7.5, echo the point nowcast re-

sults with MFS performing better than MIDAS over almost all periods, except in the

very early periods of testing. In particular, during crisis periods, we see significant

decrease in LPDR of the TVARp3q model. This demonstrates how MFS, and to a

lesser extent MIDAS, is robust under shocks by utilizing high frequency data that

provide crucial, up-to-date information that better represent the current economic

situation. This is prevalent for MFS with leads, as shocks can happen within a

quarter that cannot be picked up by an TVARp3q model only using quarterly data.

Figs. 7.6 and 7.7 compare the 1-step ahead standard deviation results. Note

that MFS and MIDAS both have lower standard deviations when we include leads,

reflecting refined filtered nowcasts throughout a quarter. However, due to the

restriction of MIDAS to static volatility, we see that it fails to adapt to large shocks,

namely the sub-prime mortgage crisis. MFS, on the other hand, is able to adapt

dynamically, as seen in the jump in standard deviation around 2009. This flexibility

in volatility is reflected through the LPDR results.

FIGURE 7.4: US GDP nowcasting 1991/Q1-2015/Q4: 1-quarter ahead log predic-
tive density ratios LPDR1:tp1q sequentially revised at each of the t “ 1:100 quarters
with no leads. The baseline at 0 over all t corresponds to the standard BPS model.
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FIGURE 7.5: US GDP nowcasting 1991/Q1-2015/Q4: 1-quarter ahead log predic-
tive density ratios LPDR1:tp1q sequentially revised at each of the t “ 1:100 quarters
with no leads. The baseline at 0 over all t corresponds to the standard BPS model.

FIGURE 7.6: US GDP nowcasting 1991/Q1-2015/Q4: 1-step ahead forecast stan-
dard deviations sequentially computed at each of the t “ 1:100 quarters with no
leads.
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FIGURE 7.7: US GDP nowcasting 1991/Q1-2015/Q4: 1-step ahead forecast stan-
dard deviations sequentially computed at each of the t “ 1:100 quarters with leads
of two months.

Moving on to MFS on-line posterior means of MFS coefficients (Figs. 7.8 and 7.9),

we get a better understanding on how MFS improves nowcasts by dynamically

adapting the high frequency information. For the nowcasts with no leads (Fig. 7.8),

the information coming from employment is the most significant. During the cri-

sis, there is a significant increase in information provided by industrial production,

perhaps because industrial production was quicker to adapt to the shock compared

to employment and capacity utilization. Interestingly, GDP (TVARp3q) provides

very little information in terms of model coefficients. This can be seen as a lack

of persistence in the lags of GDP, with more information coming from economic

indicators that effect GDP rather than GDP of past. This is particularly useful for

policy makers making decisions based on metrics they can control, which are often

high frequency. For nowcasts with leads (Fig. 7.9), there is less variability during

the shock, but more of a persistent structural change over time. Like that of now-

casts with no leads, employment starts out providing the most information, then is

later taken over by industrial production at around the dot-com bubble. Capacity
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FIGURE 7.8: US GDP nowcasting 1991/Q1-2015/Q4: On-line posterior means of
MFS model coefficients sequentially computed at each of the t “ 1:100 quarters
with no leads.

utilization decreases over time in an almost inverse proportion to industrial pro-

duction. This can be seen as the economy shifting from a more manufacturing

economy to a more IT based economy, with the persistent decline of the industrial

sector having a larger effect on the economy as a whole.

Finally, we note that misspecification (the sum of on-line posterior means of

MFS model coefficients) displays more stability in MFS with leads compared to no

leads (Fig. 7.10). This is consistent with the results above, as we expect GDP to be

better specified when we have leading information. There are also clear trends of

misspecification during the dot-com bubble and the sub-prime mortgage crisis. As

time progresses, the level of misspecification decreases as MFS learns the data and

agents. Misspecification jumps during crises, but the jumps are more severe for

MFS with no leads. By incorporating leading information from the high frequency

data, misspecification stays level relative to MFS with no leads, demonstrating how

high frequency data helps in terms of specification.
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FIGURE 7.9: US GDP nowcasting 1991/Q1-2015/Q4: On-line posterior means of
MFS model coefficients sequentially computed at each of the t “ 1:100 quarters
with leads of two months.

FIGURE 7.10: US GDP nowcasting 1991/Q1-2015/Q4: On-line posterior means
of the sum of MFS model coefficients (misspecification) sequentially computed at
each of the t “ 1:100 quarters.
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7.4 Summary

The US macroeconomic nowcasting study illustrates how BPS can be effectively

extended to mixed frequency data. The developed method, MFS, dynamically syn-

thesizes information coming from multiple frequencies in a practical and flexible

way. As a result, MFS improves forecast performance and dominates methods stan-

dard in the field, MIDAS, over varying leads and for both point and distribution

forecasts. An analysis into the on-line coefficients provides insight into how this in-

formation is synthesized over time and how it dynamically changes over different

economic regimes. Additionally, uncertainty measures demonstrate the effective-

ness of the dynamic nature of MFS under different leading information, providing

updated/filtered forecasts throughout a quarter.
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8

Concluding Remarks

Drawing on theory of Bayesian agent opinion analysis, BPS provides a theoreti-

cally and conceptually sound framework to compare and synthesize density fore-

casts that has been developed here for dynamic contexts of sequential time series

forecasting. With this new framework and extension, decision makers are able to

dynamically calibrate, learn, and update coefficients for ranges of forecasts from

different agents, including, but not exclusive to, dynamic and static models, ex-

perts and professional forecasters, models with varying temporal specifications,

and mixed frequency models. The studies explored in this dissertation illustrate

the benefits of using BPS for multiple different problems that are topical in eco-

nomics and finance. BPS improves forecasts and decisions and provides insight

into the latent dependencies underlying the economy and market. As BPS pro-

vides a unifying framework for Bayesian forecast combination/synthesis, there is

great potential in terms of theory, computation, methodology, and application to

be further explored.

Apart from the foundational theory of BPS, several theoretical aspects of the
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synthesized forecasts and understanding of posterior analysis is undeveloped. One

theoretical result that should be explored is on the optimality of the BPS syn-

thesized forecasts compared to other restrictive strategies (linear combinations,

weights summing to one, etc.). The optimality of combination of forecasts un-

der latent dependencies, the setting and key characteristic of BPS, has not been

explored in the literature. Another theoretical question concerns model misspecifi-

cation. Empirically, through the studies explored, BPS coefficients on models being

synthesized roughly sum to one, providing a metric to model misspecification over

the whole set of agent models. However, there is no theory that indicate that the

coefficients must sum to anything close to one. Further analysis into the theoretical

properties of misspecification under BPS is warranted.

Computational questions are also relevant; as developed and exemplified, the

studies here in the sequential time series context relies on repeat analysis using

MCMC, with a new simulation analysis required as each new time period arises.

This is in common with the application of Bayesian dynamic latent factor mod-

els of other forms in the sequential forecasting context, including, in particular,

dynamic latent threshold models (e.g. Nakajima and West, 2013a,b, 2015; Zhou

et al., 2014) whose use in defining sets of candidate agents for BPS is of some ap-

plied interest. One view is that a substantial computational burden is nowadays a

minor issue and, in fact, a small price to pay for the potential improvements in fore-

casting accuracy and insights that our example illustrates. That said, some methods

of sequential model analysis based on sequential Monte Carlo (SMC, e.g. Lopes and

Tsay, 2011) may provide for more efficient computations, at least in terms of CPU

cycles, in some stylized versions of the overall BPS model framework.

In terms of methodological development, there are several directions that BPS

can take, two of which are noted here. First, the specification of the synthesis

function is not fully explored in the studies explored in this dissertation. For exam-
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ple, the synthesis function can learn the discount factors, or incorporate stochastic

volatility, in order to improve dynamics over time. If the decision maker believes

that there are clear regime changes in the data and agents, a regime switching

model can be used as the synthesis function to improve forecasts. In marketing,

sales of products differ by weekday/weekend, weather, and so on, and one model

might be useful for one characteristic but poor for another (e.g. X model forecasts

special events well but performs poorly for regular weekdays). Creative ways to

model the synthesis function, including modifying the state equation, can be useful

in these cases. Second, the question of agent screening is not addressed. In the

studies conducted in this dissertation, the number of agents are relatively small

compared to the abundant number of models that a decision maker can construct

or consult. There is a clear tradeoff between the number of agents and the effi-

ciency of BPS. As the number of agents increases, the number of redundant agents

increases, as it is expected that these agents are similar, increasing noise and ineffi-

ciency in BPS. There are two trains of thought to tackle this problem: thresholding

and pre-screening. The process of thresholding is simple; the decision maker incor-

porates a mechanism in the synthesis function to threshold out unnecessary agents

(e.g. Nakajima and West, 2013a,b, 2015; Zhou et al., 2014). However, it is unclear

whether “unnecessary” can be well defined in the BPS setting, as an agent might

be unnecessary in terms of “redundancy” or “low signal”. The literature of thresh-

olding and shrinkage focuses on the latter, however, low signal (poor) agents often

improve forecasts by providing different information. Thus, thresholding should

be defined as screening out redundant forecasts, though it is unclear as to how

to do this through the specification of the synthesis function. Pre-screening agents

would require the decision maker to screen out agents that are redundant based on

some metric. One metric that might be fruitful is to look at BPS as an information

maximization problem (note that information appears in the BPS theory as H). A
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logical way to screen agents would then be to maximize the information provided

by the agents up until a certain threshold (marginal increase in information). By

doing this, good but redundant forecasts could be effectively screened out based

on the information they provide, while poor but unique forecasts may be included.

This dissertation explores multiple facets of problems in time series analysis.

However, there are several applications in progress in other areas. For example,

using forecasts from actual people (economists, professional forecasters, etc.) is

a topical subject in forecasting. One question that is central in the literature is

whether forecasters exhibit herding behavior, and when. BPS can address this

question through retrospective analysis of the dependence among agents. Another

direction that is interesting is applications where competing “theories” that rep-

resent the world exist. In economics, finance, and marketing, researchers build

structural models based on hypotheses they believe represent the economy, mar-

ket, or consumer. Researchers are focused on these hypotheses, trying to validate

them by demonstrating how they fit to the data. However, reality is most likely

beyond these conceptual structures. BPS can provide interesting solutions to rec-

oncile these competing hypotheses by dynamically synthesizing them and learning

the latent dependencies. Under the BPS framework, and a broader philosophy of

Bayesian thinking, reality is neither light nor shadow, but rather in the twilight

zone. BPS thus has the potential to broaden and deepen the understanding of un-

derlying structures of economies, market, and human behavior in a way that has

been previously unexplored.
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Appendix A

Posterior Computation and MCMC Algorithms

A.1 MCMC algorithm for univariate BPS

At each time, t, the decision maker has the historical information ty1:t,H1:tu and

specifies the following priors: θ0 „ Npm0,C0q and 1{v0 „ Gpn0, s0q and discount

factors pβ, δq.

Step 0. Initialize by sampling F t “ p1, xt1, ..., xtJq from htjpxtjq for all 1 : t and

1 : J .

Step 1. Sample ppΦ1:t|X1:t,y1:tq using FFBS for the following model:

yt “ F
1
tθt ` νt, νt „ Np0, vtq,

θt “ θt´1 ` ωt, ωt „ Np0, vtW tq.

Step 2. Sample ppX1:t|Φ1:t,y1:t,H1:tq from

ppxt|Φt, yt,Htq 9Npyt|F
1
tθt, vtq

ź

j“1:J

htjpxtjq.
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Step 2. (a) If the forecasts htjpxtjq are normally distributed (or mixtures thereof)

as htjpxtjq „ Npatj, Atjq, then the posterior distribution for each t is

ppxt|Φt, yt,Htq “ Npat `Λpyt ´ a
1

tθtq,At ´AtθtΛq,

where

at “ pat1, at2, ..., atJq
1, At “ diagpAt1, At2, ..., AtJq, and Λ “ θ

1

tAt{pθ
1

tAtθt ` υtq,

using the properties of conditional normals.

Step 2. (b) For non-normal forecasts, we can either use a Metropolis-Hastings

algorithm or importance sampling scheme to sample ppxt|Φt, yt,Htq. Alternatively,

a rejection sampling could be used, though not developed here.

Metropolis-Hastings

Step 1. Sample F ˚t “ p1, x
˚
t1, ..., x

˚
tJq

1 from htjpx
˚
tjq for all 1 : t and 1 : J .

Step 2. Accept F ˚t , for all 1 : t, with acceptance probability,

αpF t,F
˚
t q “ min

"

1,
ppyt|F

˚1
t θt, vtq

ppyt|F
1
tθt, vtq

*

.

Importance Sampling

Step 1. Compute ppyt|F
piq1
t θt, vtq for each i “ 1 : I samples from htjpxtjq.

Step 2. Compute weights,

w
piq
t “

ppyt|F
piq1
t θt, vtq

ř

i“1:I ppyt|F
piq1
t θt, vtq

.

Step 3. Resample F t for 1 : t using weights wt.

Step 3. Repeat Step 1. and Step 2. until the samples converge.
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A.2 MCMC algorithm for multivariate BPS

At each time, t, the decision maker has the historical information tY 1:t,H1:tu and

specifies the following priors: θ0 „ Npm0,C0q and V0 „ W´1
pn0,D0q and dis-

count factors pβ, δq.

Step 0. Initialize by sampling

F t “

¨

˚

˚

˚

˝

1 x1t1 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0

0 0 1 x1t2
...

... . . . ...
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 x1tq

˛

‹

‹

‹

‚

from htjpxtjq for all 1 : t and 1 : J .

Step 1. Sample ppθ1:t|X1:t,Y 1:t,V 1:tq using FFBS for the following model:

yt “ F
1
tθt ` νt, νt „ Np0,V tq,

θt “ θt´1 ` ωt, ωt „ Np0,W tq.

1. Forward filtering

a. One step ahead prediction of θt:

at “mt´1,

Rt “ Ct´1{δ.

b. One step ahead prediction of yt:

f t “ F
1
tat,

Qt “ F
1
tRtF t ` V t.

c. Posterior update:

mt “ at `Atet, et “ yt ´ f t,

Ct “ AtQtA
1
t `Rt, At “ RtF tQ

´1
t
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2. Backward sampling from the normal with:

Erθts “mt `CtR
´1
t`1pθt`1 ´ at`1q,

Vrθts “ Ct ´CtR
´1
t`1Ct.

Step 2. Individually sample pV 1, ...,V T q from the following inverse Wishart dis-

tributions:

V t|X t,yt,θt „W
´1
pnt,Dtq,

nt “ βnt´1 ` 1, Dt “ βDt´1 ` pyt ´ F
1
tθtqpyt ´ F

1
tθtq

1.

Step 3. Sample ppX1:t|Φ1:t,y1:t,H1:tq from

ppX t|Φt,yt,Htq9Npyt|F
1
tθt,V tq

ź

j“1:J

htjpxtjq,

utilizing the properties of conditional normals for variants of normal distribution

forecasts and Metropolis-Hastings or importance sampling for more general fore-

cast distributions (see A.1).

Step 4. Repeat Step 1-Step 3 until convergence.
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